1968. Array With Elements Not Equal to Average of Neighbors
Description
You are given a 0-indexed array nums
of distinct integers. You want to rearrange the elements in the array such that every element in the rearranged array is not equal to the average of its neighbors.
More formally, the rearranged array should have the property such that for every i
in the range 1 <= i < nums.length - 1
, (nums[i-1] + nums[i+1]) / 2
is not equal to nums[i]
.
Return any rearrangement of nums
that meets the requirements.
Example 1:
Input: nums = [1,2,3,4,5] Output: [1,2,4,5,3] Explanation: When i=1, nums[i] = 2, and the average of its neighbors is (1+4) / 2 = 2.5. When i=2, nums[i] = 4, and the average of its neighbors is (2+5) / 2 = 3.5. When i=3, nums[i] = 5, and the average of its neighbors is (4+3) / 2 = 3.5.
Example 2:
Input: nums = [6,2,0,9,7] Output: [9,7,6,2,0] Explanation: When i=1, nums[i] = 7, and the average of its neighbors is (9+6) / 2 = 7.5. When i=2, nums[i] = 6, and the average of its neighbors is (7+2) / 2 = 4.5. When i=3, nums[i] = 2, and the average of its neighbors is (6+0) / 2 = 3.
Constraints:
3 <= nums.length <= 105
0 <= nums[i] <= 105
Solutions
Solution 1: Sorting
Since the elements in the array are distinct, we can first sort the array, then divide the array into two parts. Place the first half of the elements in the even positions of the answer array, and the second half of the elements in the odd positions of the answer array. In this way, for each element, its two adjacent elements will not be equal to its average value.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array $\textit{nums}$.
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 |
|