Skip to content

1933. Check if String Is Decomposable Into Value-Equal Substrings πŸ”’

Description

A value-equal string is a string where all characters are the same.

  • For example, "1111" and "33" are value-equal strings.
  • In contrast, "123" is not a value-equal string.

Given a digit string s, decompose the string into some number of consecutive value-equal substrings where exactly one substring has a length of 2 and the remaining substrings have a length of 3.

Return true if you can decompose s according to the above rules. Otherwise, return false.

A substring is a contiguous sequence of characters in a string.

 

Example 1:

Input: s = "000111000"
Output: false
Explanation: s cannot be decomposed according to the rules because ["000", "111", "000"] does not have a substring of length 2.

Example 2:

Input: s = "00011111222"
Output: true
Explanation: s can be decomposed into ["000", "111", "11", "222"].

Example 3:

Input: s = "011100022233"
Output: false
Explanation: s cannot be decomposed according to the rules because of the first '0'.

 

Constraints:

  • 1 <= s.length <= 1000
  • s consists of only digits '0' through '9'.

Solutions

Solution 1: Two Pointers

We traverse the string $s$, using two pointers $i$ and $j$ to count the length of each equal substring. If the length modulo $3$ is $1$, it means that the length of this substring does not meet the requirements, so we return false. If the length modulo $3$ is $2$, it means that a substring of length $2$ has appeared. If a substring of length $2$ has appeared before, return false, otherwise assign the value of $j$ to $i$ and continue to traverse.

After the traversal, check whether a substring of length $2$ has appeared. If not, return false, otherwise return true.

The time complexity is $O(n)$, where $n$ is the length of the string $s$. The space complexity is $O(1)$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def isDecomposable(self, s: str) -> bool:
        cnt2 = 0
        for _, g in groupby(s):
            m = len(list(g))
            if m % 3 == 1:
                return False
            cnt2 += m % 3 == 2
            if cnt2 > 1:
                return False
        return cnt2 == 1
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
    public boolean isDecomposable(String s) {
        int i = 0, n = s.length();
        int cnt2 = 0;
        while (i < n) {
            int j = i;
            while (j < n && s.charAt(j) == s.charAt(i)) {
                ++j;
            }
            if ((j - i) % 3 == 1) {
                return false;
            }
            if ((j - i) % 3 == 2 && ++cnt2 > 1) {
                return false;
            }
            i = j;
        }
        return cnt2 == 1;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
    bool isDecomposable(string s) {
        int cnt2 = 0;
        for (int i = 0, n = s.size(); i < n;) {
            int j = i;
            while (j < n && s[j] == s[i]) {
                ++j;
            }
            if ((j - i) % 3 == 1) {
                return false;
            }
            cnt2 += (j - i) % 3 == 2;
            if (cnt2 > 1) {
                return false;
            }
            i = j;
        }
        return cnt2 == 1;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
func isDecomposable(s string) bool {
    i, n := 0, len(s)
    cnt2 := 0
    for i < n {
        j := i
        for j < n && s[j] == s[i] {
            j++
        }
        if (j-i)%3 == 1 {
            return false
        }
        if (j-i)%3 == 2 {
            cnt2++
            if cnt2 > 1 {
                return false
            }
        }
        i = j
    }
    return cnt2 == 1
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
function isDecomposable(s: string): boolean {
    const n = s.length;
    let cnt2 = 0;
    for (let i = 0; i < n; ) {
        let j = i;
        while (j < n && s[j] === s[i]) {
            ++j;
        }
        if ((j - i) % 3 === 1) {
            return false;
        }
        if ((j - i) % 3 === 2 && ++cnt2 > 1) {
            return false;
        }
        i = j;
    }
    return cnt2 === 1;
}

Comments