1921. Eliminate Maximum Number of Monsters
Description
You are playing a video game where you are defending your city from a group of n
monsters. You are given a 0-indexed integer array dist
of size n
, where dist[i]
is the initial distance in kilometers of the ith
monster from the city.
The monsters walk toward the city at a constant speed. The speed of each monster is given to you in an integer array speed
of size n
, where speed[i]
is the speed of the ith
monster in kilometers per minute.
You have a weapon that, once fully charged, can eliminate a single monster. However, the weapon takes one minute to charge. The weapon is fully charged at the very start.
You lose when any monster reaches your city. If a monster reaches the city at the exact moment the weapon is fully charged, it counts as a loss, and the game ends before you can use your weapon.
Return the maximum number of monsters that you can eliminate before you lose, or n
if you can eliminate all the monsters before they reach the city.
Example 1:
Input: dist = [1,3,4], speed = [1,1,1] Output: 3 Explanation: In the beginning, the distances of the monsters are [1,3,4]. You eliminate the first monster. After a minute, the distances of the monsters are [X,2,3]. You eliminate the second monster. After a minute, the distances of the monsters are [X,X,2]. You eliminate the third monster. All 3 monsters can be eliminated.
Example 2:
Input: dist = [1,1,2,3], speed = [1,1,1,1] Output: 1 Explanation: In the beginning, the distances of the monsters are [1,1,2,3]. You eliminate the first monster. After a minute, the distances of the monsters are [X,0,1,2], so you lose. You can only eliminate 1 monster.
Example 3:
Input: dist = [3,2,4], speed = [5,3,2] Output: 1 Explanation: In the beginning, the distances of the monsters are [3,2,4]. You eliminate the first monster. After a minute, the distances of the monsters are [X,0,2], so you lose. You can only eliminate 1 monster.
Constraints:
n == dist.length == speed.length
1 <= n <= 105
1 <= dist[i], speed[i] <= 105
Solutions
Solution 1: Sorting + Greedy
We use the $\textit{times}$ array to record the latest time each monster can be eliminated. For the $i$-th monster, the latest time it can be eliminated is:
$$\textit{times}[i] = \left\lfloor \frac{\textit{dist}[i]-1}{\textit{speed}[i]} \right\rfloor$$
Next, we sort the $\textit{times}$ array in ascending order.
Then, we traverse the $\textit{times}$ array. For the $i$-th monster, if $\textit{times}[i] \geq i$, it means the $i$-th monster can be eliminated. Otherwise, it means the $i$-th monster cannot be eliminated, and we return $i$ immediately.
If all monsters can be eliminated, we return $n$.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the array.
1 2 3 4 5 6 7 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|