1909. Remove One Element to Make the Array Strictly Increasing
Description
Given a 0-indexed integer array nums
, return true
if it can be made strictly increasing after removing exactly one element, or false
otherwise. If the array is already strictly increasing, return true
.
The array nums
is strictly increasing if nums[i - 1] < nums[i]
for each index (1 <= i < nums.length).
Example 1:
Input: nums = [1,2,10,5,7] Output: true Explanation: By removing 10 at index 2 from nums, it becomes [1,2,5,7]. [1,2,5,7] is strictly increasing, so return true.
Example 2:
Input: nums = [2,3,1,2] Output: false Explanation: [3,1,2] is the result of removing the element at index 0. [2,1,2] is the result of removing the element at index 1. [2,3,2] is the result of removing the element at index 2. [2,3,1] is the result of removing the element at index 3. No resulting array is strictly increasing, so return false.
Example 3:
Input: nums = [1,1,1] Output: false Explanation: The result of removing any element is [1,1]. [1,1] is not strictly increasing, so return false.
Constraints:
2 <= nums.length <= 1000
1 <= nums[i] <= 1000
Solutions
Solution 1: Traversal
We can traverse the array to find the first position $i$ where $\textit{nums}[i] < \textit{nums}[i+1]$ is not satisfied. Then, we check if the array is strictly increasing after removing either $i$ or $i+1$. If it is, we return $\textit{true}$; otherwise, we return $\textit{false}$.
The time complexity is $O(n)$, where $n$ is the length of the array $\textit{nums}$. The space complexity is $O(1)$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 |
|