1882. Process Tasks Using Servers
Description
You are given two 0-indexed integer arrays servers
and tasks
of lengths n
and m
respectively. servers[i]
is the weight of the ith
server, and tasks[j]
is the time needed to process the jth
task in seconds.
Tasks are assigned to the servers using a task queue. Initially, all servers are free, and the queue is empty.
At second j
, the jth
task is inserted into the queue (starting with the 0th
task being inserted at second 0
). As long as there are free servers and the queue is not empty, the task in the front of the queue will be assigned to a free server with the smallest weight, and in case of a tie, it is assigned to a free server with the smallest index.
If there are no free servers and the queue is not empty, we wait until a server becomes free and immediately assign the next task. If multiple servers become free at the same time, then multiple tasks from the queue will be assigned in order of insertion following the weight and index priorities above.
A server that is assigned task j
at second t
will be free again at second t + tasks[j]
.
Build an array ans
of length m
, where ans[j]
is the index of the server the jth
task will be assigned to.
Return the array ans
.
Example 1:
Input: servers = [3,3,2], tasks = [1,2,3,2,1,2] Output: [2,2,0,2,1,2] Explanation: Events in chronological order go as follows: - At second 0, task 0 is added and processed using server 2 until second 1. - At second 1, server 2 becomes free. Task 1 is added and processed using server 2 until second 3. - At second 2, task 2 is added and processed using server 0 until second 5. - At second 3, server 2 becomes free. Task 3 is added and processed using server 2 until second 5. - At second 4, task 4 is added and processed using server 1 until second 5. - At second 5, all servers become free. Task 5 is added and processed using server 2 until second 7.
Example 2:
Input: servers = [5,1,4,3,2], tasks = [2,1,2,4,5,2,1] Output: [1,4,1,4,1,3,2] Explanation: Events in chronological order go as follows: - At second 0, task 0 is added and processed using server 1 until second 2. - At second 1, task 1 is added and processed using server 4 until second 2. - At second 2, servers 1 and 4 become free. Task 2 is added and processed using server 1 until second 4. - At second 3, task 3 is added and processed using server 4 until second 7. - At second 4, server 1 becomes free. Task 4 is added and processed using server 1 until second 9. - At second 5, task 5 is added and processed using server 3 until second 7. - At second 6, task 6 is added and processed using server 2 until second 7.
Constraints:
servers.length == n
tasks.length == m
1 <= n, m <= 2 * 105
1 <= servers[i], tasks[j] <= 2 * 105
Solutions
Solution 1: Priority Queue (Min-Heap)
We use a min-heap \(\textit{idle}\) to maintain all idle servers, where each element is a tuple \((x, i)\) representing the \(i\)-th server with weight \(x\). We use another min-heap \(\textit{busy}\) to maintain all busy servers, where each element is a tuple \((w, s, i)\) representing the \(i\)-th server that will be idle at time \(w\) with weight \(s\). Initially, we add all servers to \(\textit{idle}\).
Next, we iterate through all tasks. For the \(j\)-th task, we first remove all servers from \(\textit{busy}\) that will be idle at or before time \(j\) and add them to \(\textit{idle}\). Then we take the server with the smallest weight from \(\textit{idle}\), add it to \(\textit{busy}\), and assign it to the \(j\)-th task. If \(\textit{idle}\) is empty, we take the server with the earliest idle time from \(\textit{busy}\), add it to \(\textit{busy}\), and assign it to the \(j\)-th task.
After iterating through all tasks, we obtain the answer array \(\textit{ans}\).
The time complexity is \(O((n + m) \log n)\), where \(n\) is the number of servers and \(m\) is the number of tasks. The space complexity is \(O(n)\). Here, \(n\) and \(m\) are the number of servers and tasks, respectively.
Similar problems:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
|