Skip to content

1878. Get Biggest Three Rhombus Sums in a Grid

Description

You are given an m x n integer matrix grid​​​.

A rhombus sum is the sum of the elements that form the border of a regular rhombus shape in grid​​​. The rhombus must have the shape of a square rotated 45 degrees with each of the corners centered in a grid cell. Below is an image of four valid rhombus shapes with the corresponding colored cells that should be included in each rhombus sum:

Note that the rhombus can have an area of 0, which is depicted by the purple rhombus in the bottom right corner.

Return the biggest three distinct rhombus sums in the grid in descending order. If there are less than three distinct values, return all of them.

 

Example 1:

Input: grid = [[3,4,5,1,3],[3,3,4,2,3],[20,30,200,40,10],[1,5,5,4,1],[4,3,2,2,5]]
Output: [228,216,211]
Explanation: The rhombus shapes for the three biggest distinct rhombus sums are depicted above.
- Blue: 20 + 3 + 200 + 5 = 228
- Red: 200 + 2 + 10 + 4 = 216
- Green: 5 + 200 + 4 + 2 = 211

Example 2:

Input: grid = [[1,2,3],[4,5,6],[7,8,9]]
Output: [20,9,8]
Explanation: The rhombus shapes for the three biggest distinct rhombus sums are depicted above.
- Blue: 4 + 2 + 6 + 8 = 20
- Red: 9 (area 0 rhombus in the bottom right corner)
- Green: 8 (area 0 rhombus in the bottom middle)

Example 3:

Input: grid = [[7,7,7]]
Output: [7]
Explanation: All three possible rhombus sums are the same, so return [7].

 

Constraints:

  • m == grid.length
  • n == grid[i].length
  • 1 <= m, n <= 50
  • 1 <= grid[i][j] <= 105

Solutions

Solution 1: Enumerate Diamond Center + Prefix Sum + Ordered Set

We can preprocess to get two prefix sum arrays $s_1$ and $s_2$, where $s_1[i][j]$ represents the sum of the elements on the upper left diagonal ending at $(i, j)$, and $s_2[i][j]$ represents the sum of the elements on the upper right diagonal ending at $(i, j)$.

Next, we enumerate each position $(i, j)$, first add $grid[i][j]$ to the ordered set $ss$, and then enumerate the length $k$ of the diamond. The sum of the diamond with $(i, j)$ as the center and a side length of $k$ is:

$$ \begin{aligned} &\quad s_1[i + k][j] - s_1[i][j - k] + s_1[i][j + k] - s_1[i - k][j] \ &+ s_2[i][j - k] - s_2[i - k][j] + s_2[i + k][j] - s_2[i][j + k] \ &- grid[i + k - 1][j - 1] + grid[i - k - 1][j - 1] \end{aligned} $$

We add this value to the ordered set $ss$, while ensuring that the size of the ordered set $ss$ does not exceed $3$. Finally, we output the elements in the ordered set $ss$ in reverse order.

The time complexity is $O(m \times n \times \min(m, n))$, and the space complexity is $O(m \times n)$. Here, $m$ and $n$ are the number of rows and columns of the matrix, respectively.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from sortedcontainers import SortedSet


class Solution:
    def getBiggestThree(self, grid: List[List[int]]) -> List[int]:
        m, n = len(grid), len(grid[0])
        s1 = [[0] * (n + 2) for _ in range(m + 1)]
        s2 = [[0] * (n + 2) for _ in range(m + 1)]
        for i, row in enumerate(grid, 1):
            for j, x in enumerate(row, 1):
                s1[i][j] = s1[i - 1][j - 1] + x
                s2[i][j] = s2[i - 1][j + 1] + x
        ss = SortedSet()
        for i, row in enumerate(grid, 1):
            for j, x in enumerate(row, 1):
                l = min(i - 1, m - i, j - 1, n - j)
                ss.add(x)
                for k in range(1, l + 1):
                    a = s1[i + k][j] - s1[i][j - k]
                    b = s1[i][j + k] - s1[i - k][j]
                    c = s2[i][j - k] - s2[i - k][j]
                    d = s2[i + k][j] - s2[i][j + k]
                    ss.add(
                        a + b + c + d - grid[i + k - 1][j - 1] + grid[i - k - 1][j - 1]
                    )
                while len(ss) > 3:
                    ss.remove(ss[0])
        return list(ss)[::-1]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
class Solution {
    public int[] getBiggestThree(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        int[][] s1 = new int[m + 1][n + 2];
        int[][] s2 = new int[m + 1][n + 2];
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                s1[i][j] = s1[i - 1][j - 1] + grid[i - 1][j - 1];
                s2[i][j] = s2[i - 1][j + 1] + grid[i - 1][j - 1];
            }
        }
        TreeSet<Integer> ss = new TreeSet<>();
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                int l = Math.min(Math.min(i - 1, m - i), Math.min(j - 1, n - j));
                ss.add(grid[i - 1][j - 1]);
                for (int k = 1; k <= l; ++k) {
                    int a = s1[i + k][j] - s1[i][j - k];
                    int b = s1[i][j + k] - s1[i - k][j];
                    int c = s2[i][j - k] - s2[i - k][j];
                    int d = s2[i + k][j] - s2[i][j + k];
                    ss.add(a + b + c + d - grid[i + k - 1][j - 1] + grid[i - k - 1][j - 1]);
                }
                while (ss.size() > 3) {
                    ss.pollFirst();
                }
            }
        }
        int[] ans = new int[ss.size()];
        for (int i = 0; i < ans.length; ++i) {
            ans[i] = ss.pollLast();
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
class Solution {
public:
    vector<int> getBiggestThree(vector<vector<int>>& grid) {
        int m = grid.size(), n = grid[0].size();
        vector<vector<int>> s1(m + 1, vector<int>(n + 2));
        vector<vector<int>> s2(m + 1, vector<int>(n + 2));
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                s1[i][j] = s1[i - 1][j - 1] + grid[i - 1][j - 1];
                s2[i][j] = s2[i - 1][j + 1] + grid[i - 1][j - 1];
            }
        }
        set<int> ss;
        for (int i = 1; i <= m; ++i) {
            for (int j = 1; j <= n; ++j) {
                int l = min({i - 1, m - i, j - 1, n - j});
                ss.insert(grid[i - 1][j - 1]);
                for (int k = 1; k <= l; ++k) {
                    int a = s1[i + k][j] - s1[i][j - k];
                    int b = s1[i][j + k] - s1[i - k][j];
                    int c = s2[i][j - k] - s2[i - k][j];
                    int d = s2[i + k][j] - s2[i][j + k];
                    ss.insert(a + b + c + d - grid[i + k - 1][j - 1] + grid[i - k - 1][j - 1]);
                }
                while (ss.size() > 3) {
                    ss.erase(ss.begin());
                }
            }
        }
        return vector<int>(ss.rbegin(), ss.rend());
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
func getBiggestThree(grid [][]int) []int {
    m, n := len(grid), len(grid[0])
    s1 := make([][]int, m+1)
    s2 := make([][]int, m+1)
    for i := range s1 {
        s1[i] = make([]int, n+2)
        s2[i] = make([]int, n+2)
    }
    for i := 1; i <= m; i++ {
        for j := 1; j <= n; j++ {
            s1[i][j] = s1[i-1][j-1] + grid[i-1][j-1]
            s2[i][j] = s2[i-1][j+1] + grid[i-1][j-1]
        }
    }

    ss := treemap.NewWithIntComparator()
    for i := 1; i <= m; i++ {
        for j := 1; j <= n; j++ {
            l := min(i-1, m-i, j-1, n-j)
            ss.Put(grid[i-1][j-1], nil)
            for k := 1; k <= l; k++ {
                a := s1[i+k][j] - s1[i][j-k]
                b := s1[i][j+k] - s1[i-k][j]
                c := s2[i][j-k] - s2[i-k][j]
                d := s2[i+k][j] - s2[i][j+k]
                ss.Put(a+b+c+d-grid[i+k-1][j-1]+grid[i-k-1][j-1], nil)
            }
            for ss.Size() > 3 {
                x, _ := ss.Min()
                ss.Remove(x.(int))
            }
        }
    }
    ans := make([]int, ss.Size())
    for i, k := range ss.Keys() {
        ans[len(ans)-i-1] = k.(int)
    }
    return ans
}
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
function getBiggestThree(grid: number[][]): number[] {
    const m = grid.length;
    const n = grid[0].length;
    const s1: number[][] = Array.from({ length: m + 1 }, () => Array(n + 2).fill(0));
    const s2: number[][] = Array.from({ length: m + 1 }, () => Array(n + 2).fill(0));
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            s1[i][j] = s1[i - 1][j - 1] + grid[i - 1][j - 1];
            s2[i][j] = s2[i - 1][j + 1] + grid[i - 1][j - 1];
        }
    }
    const ss = new TreeSet<number>();
    for (let i = 1; i <= m; ++i) {
        for (let j = 1; j <= n; ++j) {
            const l = Math.min(i - 1, m - i, j - 1, n - j);
            ss.add(grid[i - 1][j - 1]);
            for (let k = 1; k <= l; ++k) {
                const a = s1[i + k][j] - s1[i][j - k];
                const b = s1[i][j + k] - s1[i - k][j];
                const c = s2[i][j - k] - s2[i - k][j];
                const d = s2[i + k][j] - s2[i][j + k];
                ss.add(a + b + c + d - grid[i + k - 1][j - 1] + grid[i - k - 1][j - 1]);
            }
            while (ss.size() > 3) {
                ss.shift();
            }
        }
    }
    return [...ss].reverse();
}

type Compare<T> = (lhs: T, rhs: T) => number;

class RBTreeNode<T = number> {
    data: T;
    count: number;
    left: RBTreeNode<T> | null;
    right: RBTreeNode<T> | null;
    parent: RBTreeNode<T> | null;
    color: number;
    constructor(data: T) {
        this.data = data;
        this.left = this.right = this.parent = null;
        this.color = 0;
        this.count = 1;
    }

    sibling(): RBTreeNode<T> | null {
        if (!this.parent) return null; // sibling null if no parent
        return this.isOnLeft() ? this.parent.right : this.parent.left;
    }

    isOnLeft(): boolean {
        return this === this.parent!.left;
    }

    hasRedChild(): boolean {
        return (
            Boolean(this.left && this.left.color === 0) ||
            Boolean(this.right && this.right.color === 0)
        );
    }
}

class RBTree<T> {
    root: RBTreeNode<T> | null;
    lt: (l: T, r: T) => boolean;
    constructor(compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0)) {
        this.root = null;
        this.lt = (l: T, r: T) => compare(l, r) < 0;
    }

    rotateLeft(pt: RBTreeNode<T>): void {
        const right = pt.right!;
        pt.right = right.left;

        if (pt.right) pt.right.parent = pt;
        right.parent = pt.parent;

        if (!pt.parent) this.root = right;
        else if (pt === pt.parent.left) pt.parent.left = right;
        else pt.parent.right = right;

        right.left = pt;
        pt.parent = right;
    }

    rotateRight(pt: RBTreeNode<T>): void {
        const left = pt.left!;
        pt.left = left.right;

        if (pt.left) pt.left.parent = pt;
        left.parent = pt.parent;

        if (!pt.parent) this.root = left;
        else if (pt === pt.parent.left) pt.parent.left = left;
        else pt.parent.right = left;

        left.right = pt;
        pt.parent = left;
    }

    swapColor(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
        const tmp = p1.color;
        p1.color = p2.color;
        p2.color = tmp;
    }

    swapData(p1: RBTreeNode<T>, p2: RBTreeNode<T>): void {
        const tmp = p1.data;
        p1.data = p2.data;
        p2.data = tmp;
    }

    fixAfterInsert(pt: RBTreeNode<T>): void {
        let parent = null;
        let grandParent = null;

        while (pt !== this.root && pt.color !== 1 && pt.parent?.color === 0) {
            parent = pt.parent;
            grandParent = pt.parent.parent;

            /*  Case : A
                Parent of pt is left child of Grand-parent of pt */
            if (parent === grandParent?.left) {
                const uncle = grandParent.right;

                /* Case : 1
                   The uncle of pt is also red
                   Only Recoloring required */
                if (uncle && uncle.color === 0) {
                    grandParent.color = 0;
                    parent.color = 1;
                    uncle.color = 1;
                    pt = grandParent;
                } else {
                    /* Case : 2
                       pt is right child of its parent
                       Left-rotation required */
                    if (pt === parent.right) {
                        this.rotateLeft(parent);
                        pt = parent;
                        parent = pt.parent;
                    }

                    /* Case : 3
                       pt is left child of its parent
                       Right-rotation required */
                    this.rotateRight(grandParent);
                    this.swapColor(parent!, grandParent);
                    pt = parent!;
                }
            } else {
                /* Case : B
               Parent of pt is right child of Grand-parent of pt */
                const uncle = grandParent!.left;

                /*  Case : 1
                    The uncle of pt is also red
                    Only Recoloring required */
                if (uncle != null && uncle.color === 0) {
                    grandParent!.color = 0;
                    parent.color = 1;
                    uncle.color = 1;
                    pt = grandParent!;
                } else {
                    /* Case : 2
                       pt is left child of its parent
                       Right-rotation required */
                    if (pt === parent.left) {
                        this.rotateRight(parent);
                        pt = parent;
                        parent = pt.parent;
                    }

                    /* Case : 3
                       pt is right child of its parent
                       Left-rotation required */
                    this.rotateLeft(grandParent!);
                    this.swapColor(parent!, grandParent!);
                    pt = parent!;
                }
            }
        }
        this.root!.color = 1;
    }

    delete(val: T): boolean {
        const node = this.find(val);
        if (!node) return false;
        node.count--;
        if (!node.count) this.deleteNode(node);
        return true;
    }

    deleteAll(val: T): boolean {
        const node = this.find(val);
        if (!node) return false;
        this.deleteNode(node);
        return true;
    }

    deleteNode(v: RBTreeNode<T>): void {
        const u = BSTreplace(v);

        // True when u and v are both black
        const uvBlack = (u === null || u.color === 1) && v.color === 1;
        const parent = v.parent!;

        if (!u) {
            // u is null therefore v is leaf
            if (v === this.root) this.root = null;
            // v is root, making root null
            else {
                if (uvBlack) {
                    // u and v both black
                    // v is leaf, fix double black at v
                    this.fixDoubleBlack(v);
                } else {
                    // u or v is red
                    if (v.sibling()) {
                        // sibling is not null, make it red"
                        v.sibling()!.color = 0;
                    }
                }
                // delete v from the tree
                if (v.isOnLeft()) parent.left = null;
                else parent.right = null;
            }
            return;
        }

        if (!v.left || !v.right) {
            // v has 1 child
            if (v === this.root) {
                // v is root, assign the value of u to v, and delete u
                v.data = u.data;
                v.left = v.right = null;
            } else {
                // Detach v from tree and move u up
                if (v.isOnLeft()) parent.left = u;
                else parent.right = u;
                u.parent = parent;
                if (uvBlack) this.fixDoubleBlack(u);
                // u and v both black, fix double black at u
                else u.color = 1; // u or v red, color u black
            }
            return;
        }

        // v has 2 children, swap data with successor and recurse
        this.swapData(u, v);
        this.deleteNode(u);

        // find node that replaces a deleted node in BST
        function BSTreplace(x: RBTreeNode<T>): RBTreeNode<T> | null {
            // when node have 2 children
            if (x.left && x.right) return successor(x.right);
            // when leaf
            if (!x.left && !x.right) return null;
            // when single child
            return x.left ?? x.right;
        }
        // find node that do not have a left child
        // in the subtree of the given node
        function successor(x: RBTreeNode<T>): RBTreeNode<T> {
            let temp = x;
            while (temp.left) temp = temp.left;
            return temp;
        }
    }

    fixDoubleBlack(x: RBTreeNode<T>): void {
        if (x === this.root) return; // Reached root

        const sibling = x.sibling();
        const parent = x.parent!;
        if (!sibling) {
            // No sibiling, double black pushed up
            this.fixDoubleBlack(parent);
        } else {
            if (sibling.color === 0) {
                // Sibling red
                parent.color = 0;
                sibling.color = 1;
                if (sibling.isOnLeft()) this.rotateRight(parent);
                // left case
                else this.rotateLeft(parent); // right case
                this.fixDoubleBlack(x);
            } else {
                // Sibling black
                if (sibling.hasRedChild()) {
                    // at least 1 red children
                    if (sibling.left && sibling.left.color === 0) {
                        if (sibling.isOnLeft()) {
                            // left left
                            sibling.left.color = sibling.color;
                            sibling.color = parent.color;
                            this.rotateRight(parent);
                        } else {
                            // right left
                            sibling.left.color = parent.color;
                            this.rotateRight(sibling);
                            this.rotateLeft(parent);
                        }
                    } else {
                        if (sibling.isOnLeft()) {
                            // left right
                            sibling.right!.color = parent.color;
                            this.rotateLeft(sibling);
                            this.rotateRight(parent);
                        } else {
                            // right right
                            sibling.right!.color = sibling.color;
                            sibling.color = parent.color;
                            this.rotateLeft(parent);
                        }
                    }
                    parent.color = 1;
                } else {
                    // 2 black children
                    sibling.color = 0;
                    if (parent.color === 1) this.fixDoubleBlack(parent);
                    else parent.color = 1;
                }
            }
        }
    }

    insert(data: T): boolean {
        // search for a position to insert
        let parent = this.root;
        while (parent) {
            if (this.lt(data, parent.data)) {
                if (!parent.left) break;
                else parent = parent.left;
            } else if (this.lt(parent.data, data)) {
                if (!parent.right) break;
                else parent = parent.right;
            } else break;
        }

        // insert node into parent
        const node = new RBTreeNode(data);
        if (!parent) this.root = node;
        else if (this.lt(node.data, parent.data)) parent.left = node;
        else if (this.lt(parent.data, node.data)) parent.right = node;
        else {
            parent.count++;
            return false;
        }
        node.parent = parent;
        this.fixAfterInsert(node);
        return true;
    }

    find(data: T): RBTreeNode<T> | null {
        let p = this.root;
        while (p) {
            if (this.lt(data, p.data)) {
                p = p.left;
            } else if (this.lt(p.data, data)) {
                p = p.right;
            } else break;
        }
        return p ?? null;
    }

    *inOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
        if (!root) return;
        for (const v of this.inOrder(root.left!)) yield v;
        yield root.data;
        for (const v of this.inOrder(root.right!)) yield v;
    }

    *reverseInOrder(root: RBTreeNode<T> = this.root!): Generator<T, undefined, void> {
        if (!root) return;
        for (const v of this.reverseInOrder(root.right!)) yield v;
        yield root.data;
        for (const v of this.reverseInOrder(root.left!)) yield v;
    }
}

class TreeSet<T = number> {
    _size: number;
    tree: RBTree<T>;
    compare: Compare<T>;
    constructor(
        collection: T[] | Compare<T> = [],
        compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
    ) {
        if (typeof collection === 'function') {
            compare = collection;
            collection = [];
        }
        this._size = 0;
        this.compare = compare;
        this.tree = new RBTree(compare);
        for (const val of collection) this.add(val);
    }

    size(): number {
        return this._size;
    }

    has(val: T): boolean {
        return !!this.tree.find(val);
    }

    add(val: T): boolean {
        const successful = this.tree.insert(val);
        this._size += successful ? 1 : 0;
        return successful;
    }

    delete(val: T): boolean {
        const deleted = this.tree.deleteAll(val);
        this._size -= deleted ? 1 : 0;
        return deleted;
    }

    ceil(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(p.data, val) >= 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    floor(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(val, p.data) >= 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    higher(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(val, p.data) < 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    lower(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(p.data, val) < 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    first(): T | undefined {
        return this.tree.inOrder().next().value;
    }

    last(): T | undefined {
        return this.tree.reverseInOrder().next().value;
    }

    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    pop(): T | undefined {
        const last = this.last();
        if (last === undefined) return undefined;
        this.delete(last);
        return last;
    }

    *[Symbol.iterator](): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *keys(): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *values(): Generator<T, undefined, void> {
        for (const val of this.tree.inOrder()) yield val;
        return undefined;
    }

    /**
     * Return a generator for reverse order traversing the set
     */
    *rvalues(): Generator<T, undefined, void> {
        for (const val of this.tree.reverseInOrder()) yield val;
        return undefined;
    }
}

class TreeMultiSet<T = number> {
    _size: number;
    tree: RBTree<T>;
    compare: Compare<T>;
    constructor(
        collection: T[] | Compare<T> = [],
        compare: Compare<T> = (l: T, r: T) => (l < r ? -1 : l > r ? 1 : 0),
    ) {
        if (typeof collection === 'function') {
            compare = collection;
            collection = [];
        }
        this._size = 0;
        this.compare = compare;
        this.tree = new RBTree(compare);
        for (const val of collection) this.add(val);
    }

    size(): number {
        return this._size;
    }

    has(val: T): boolean {
        return !!this.tree.find(val);
    }

    add(val: T): boolean {
        const successful = this.tree.insert(val);
        this._size++;
        return successful;
    }

    delete(val: T): boolean {
        const successful = this.tree.delete(val);
        if (!successful) return false;
        this._size--;
        return true;
    }

    count(val: T): number {
        const node = this.tree.find(val);
        return node ? node.count : 0;
    }

    ceil(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(p.data, val) >= 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    floor(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(val, p.data) >= 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    higher(val: T): T | undefined {
        let p = this.tree.root;
        let higher = null;
        while (p) {
            if (this.compare(val, p.data) < 0) {
                higher = p;
                p = p.left;
            } else {
                p = p.right;
            }
        }
        return higher?.data;
    }

    lower(val: T): T | undefined {
        let p = this.tree.root;
        let lower = null;
        while (p) {
            if (this.compare(p.data, val) < 0) {
                lower = p;
                p = p.right;
            } else {
                p = p.left;
            }
        }
        return lower?.data;
    }

    first(): T | undefined {
        return this.tree.inOrder().next().value;
    }

    last(): T | undefined {
        return this.tree.reverseInOrder().next().value;
    }

    shift(): T | undefined {
        const first = this.first();
        if (first === undefined) return undefined;
        this.delete(first);
        return first;
    }

    pop(): T | undefined {
        const last = this.last();
        if (last === undefined) return undefined;
        this.delete(last);
        return last;
    }

    *[Symbol.iterator](): Generator<T, void, void> {
        yield* this.values();
    }

    *keys(): Generator<T, void, void> {
        for (const val of this.values()) yield val;
    }

    *values(): Generator<T, undefined, void> {
        for (const val of this.tree.inOrder()) {
            let count = this.count(val);
            while (count--) yield val;
        }
        return undefined;
    }

    /**
     * Return a generator for reverse order traversing the multi-set
     */
    *rvalues(): Generator<T, undefined, void> {
        for (const val of this.tree.reverseInOrder()) {
            let count = this.count(val);
            while (count--) yield val;
        }
        return undefined;
    }
}

Comments