Skip to content

1862. Sum of Floored Pairs

Description

Given an integer array nums, return the sum of floor(nums[i] / nums[j]) for all pairs of indices 0 <= i, j < nums.length in the array. Since the answer may be too large, return it modulo 109 + 7.

The floor() function returns the integer part of the division.

 

Example 1:

Input: nums = [2,5,9]
Output: 10
Explanation:
floor(2 / 5) = floor(2 / 9) = floor(5 / 9) = 0
floor(2 / 2) = floor(5 / 5) = floor(9 / 9) = 1
floor(5 / 2) = 2
floor(9 / 2) = 4
floor(9 / 5) = 1
We calculate the floor of the division for every pair of indices in the array then sum them up.

Example 2:

Input: nums = [7,7,7,7,7,7,7]
Output: 49

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 105

Solutions

Solution 1: Prefix Sum of Value Range + Optimized Enumeration

First, we count the occurrences of each element in the array $nums$ and record them in the array $cnt$. Then, we calculate the prefix sum of the array $cnt$ and record it in the array $s$, i.e., $s[i]$ represents the count of elements less than or equal to $i$.

Next, we enumerate the denominator $y$ and the quotient $d$. Using the prefix sum array, we can calculate the count of the numerator $s[\min(mx, d \times y + y - 1)] - s[d \times y - 1]$, where $mx$ represents the maximum value in the array $nums$. Then, we multiply the count of the numerator by the count of the denominator $cnt[y]$, and then multiply by the quotient $d$. This gives us the value of all fractions that meet the conditions. By summing these values, we can get the answer.

The time complexity is $O(M \times \log M)$, and the space complexity is $O(M)$. Here, $M$ is the maximum value in the array $nums$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution:
    def sumOfFlooredPairs(self, nums: List[int]) -> int:
        mod = 10**9 + 7
        cnt = Counter(nums)
        mx = max(nums)
        s = [0] * (mx + 1)
        for i in range(1, mx + 1):
            s[i] = s[i - 1] + cnt[i]
        ans = 0
        for y in range(1, mx + 1):
            if cnt[y]:
                d = 1
                while d * y <= mx:
                    ans += cnt[y] * d * (s[min(mx, d * y + y - 1)] - s[d * y - 1])
                    ans %= mod
                    d += 1
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution {
    public int sumOfFlooredPairs(int[] nums) {
        final int mod = (int) 1e9 + 7;
        int mx = 0;
        for (int x : nums) {
            mx = Math.max(mx, x);
        }
        int[] cnt = new int[mx + 1];
        int[] s = new int[mx + 1];
        for (int x : nums) {
            ++cnt[x];
        }
        for (int i = 1; i <= mx; ++i) {
            s[i] = s[i - 1] + cnt[i];
        }
        long ans = 0;
        for (int y = 1; y <= mx; ++y) {
            if (cnt[y] > 0) {
                for (int d = 1; d * y <= mx; ++d) {
                    ans += 1L * cnt[y] * d * (s[Math.min(mx, d * y + y - 1)] - s[d * y - 1]);
                    ans %= mod;
                }
            }
        }
        return (int) ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
    int sumOfFlooredPairs(vector<int>& nums) {
        const int mod = 1e9 + 7;
        int mx = *max_element(nums.begin(), nums.end());
        vector<int> cnt(mx + 1);
        vector<int> s(mx + 1);
        for (int x : nums) {
            ++cnt[x];
        }
        for (int i = 1; i <= mx; ++i) {
            s[i] = s[i - 1] + cnt[i];
        }
        long long ans = 0;
        for (int y = 1; y <= mx; ++y) {
            if (cnt[y]) {
                for (int d = 1; d * y <= mx; ++d) {
                    ans += 1LL * cnt[y] * d * (s[min(mx, d * y + y - 1)] - s[d * y - 1]);
                    ans %= mod;
                }
            }
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
func sumOfFlooredPairs(nums []int) (ans int) {
    mx := slices.Max(nums)
    cnt := make([]int, mx+1)
    s := make([]int, mx+1)
    for _, x := range nums {
        cnt[x]++
    }
    for i := 1; i <= mx; i++ {
        s[i] = s[i-1] + cnt[i]
    }
    const mod int = 1e9 + 7
    for y := 1; y <= mx; y++ {
        if cnt[y] > 0 {
            for d := 1; d*y <= mx; d++ {
                ans += d * cnt[y] * (s[min((d+1)*y-1, mx)] - s[d*y-1])
                ans %= mod
            }
        }
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
function sumOfFlooredPairs(nums: number[]): number {
    const mx = Math.max(...nums);
    const cnt: number[] = Array(mx + 1).fill(0);
    const s: number[] = Array(mx + 1).fill(0);
    for (const x of nums) {
        ++cnt[x];
    }
    for (let i = 1; i <= mx; ++i) {
        s[i] = s[i - 1] + cnt[i];
    }
    let ans = 0;
    const mod = 1e9 + 7;
    for (let y = 1; y <= mx; ++y) {
        if (cnt[y]) {
            for (let d = 1; d * y <= mx; ++d) {
                ans += cnt[y] * d * (s[Math.min((d + 1) * y - 1, mx)] - s[d * y - 1]);
                ans %= mod;
            }
        }
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
impl Solution {
    pub fn sum_of_floored_pairs(nums: Vec<i32>) -> i32 {
        const MOD: i32 = 1_000_000_007;
        let mut mx = 0;
        for &x in nums.iter() {
            mx = mx.max(x);
        }

        let mut cnt = vec![0; (mx + 1) as usize];
        let mut s = vec![0; (mx + 1) as usize];

        for &x in nums.iter() {
            cnt[x as usize] += 1;
        }

        for i in 1..=mx as usize {
            s[i] = s[i - 1] + cnt[i];
        }

        let mut ans = 0;
        for y in 1..=mx as usize {
            if cnt[y] > 0 {
                let mut d = 1;
                while d * y <= (mx as usize) {
                    ans += ((cnt[y] as i64)
                        * (d as i64)
                        * (s[std::cmp::min(mx as usize, d * y + y - 1)] - s[d * y - 1]))
                        % (MOD as i64);
                    ans %= MOD as i64;
                    d += 1;
                }
            }
        }

        ans as i32
    }
}

Comments