1771. Maximize Palindrome Length From Subsequences
Description
You are given two strings, word1
and word2
. You want to construct a string in the following manner:
- Choose some non-empty subsequence
subsequence1
fromword1
. - Choose some non-empty subsequence
subsequence2
fromword2
. - Concatenate the subsequences:
subsequence1 + subsequence2
, to make the string.
Return the length of the longest palindrome that can be constructed in the described manner. If no palindromes can be constructed, return 0
.
A subsequence of a string s
is a string that can be made by deleting some (possibly none) characters from s
without changing the order of the remaining characters.
A palindrome is a string that reads the same forward as well as backward.
Example 1:
Input: word1 = "cacb", word2 = "cbba" Output: 5 Explanation: Choose "ab" from word1 and "cba" from word2 to make "abcba", which is a palindrome.
Example 2:
Input: word1 = "ab", word2 = "ab" Output: 3 Explanation: Choose "ab" from word1 and "a" from word2 to make "aba", which is a palindrome.
Example 3:
Input: word1 = "aa", word2 = "bb" Output: 0 Explanation: You cannot construct a palindrome from the described method, so return 0.
Constraints:
1 <= word1.length, word2.length <= 1000
word1
andword2
consist of lowercase English letters.
Solutions
Solution 1: Dynamic Programming
First, we concatenate strings word1
and word2
to get string $s$. Then we can transform the problem into finding the length of the longest palindromic subsequence in string $s$. However, when calculating the final answer, we need to ensure that at least one character in the palindrome string comes from word1
and another character comes from word2
.
We define $f[i][j]$ as the length of the longest palindromic subsequence in the substring of string $s$ with index range $[i, j]$.
If $s[i] = s[j]$, then $s[i]$ and $s[j]$ must be in the longest palindromic subsequence, at this time $f[i][j] = f[i + 1][j - 1] + 2$. At this point, we also need to judge whether $s[i]$ and $s[j]$ come from word1
and word2
. If so, we update the maximum value of the answer to $ans=\max(ans, f[i][j])$.
If $s[i] \neq s[j]$, then $s[i]$ and $s[j]$ will definitely not appear in the longest palindromic subsequence at the same time, at this time $f[i][j] = max(f[i + 1][j], f[i][j - 1])$.
Finally, we return the answer.
The time complexity is $O(n^2)$, and the space complexity is $O(n^2)$. Here, $n$ is the length of string $s$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|