1726. Tuple with Same Product
Description
Given an array nums
of distinct positive integers, return the number of tuples (a, b, c, d)
such that a * b = c * d
where a
, b
, c
, and d
are elements of nums
, and a != b != c != d
.
Example 1:
Input: nums = [2,3,4,6] Output: 8 Explanation: There are 8 valid tuples: (2,6,3,4) , (2,6,4,3) , (6,2,3,4) , (6,2,4,3) (3,4,2,6) , (4,3,2,6) , (3,4,6,2) , (4,3,6,2)
Example 2:
Input: nums = [1,2,4,5,10] Output: 16 Explanation: There are 16 valid tuples: (1,10,2,5) , (1,10,5,2) , (10,1,2,5) , (10,1,5,2) (2,5,1,10) , (2,5,10,1) , (5,2,1,10) , (5,2,10,1) (2,10,4,5) , (2,10,5,4) , (10,2,4,5) , (10,2,5,4) (4,5,2,10) , (4,5,10,2) , (5,4,2,10) , (5,4,10,2)
Constraints:
1 <= nums.length <= 1000
1 <= nums[i] <= 104
- All elements in
nums
are distinct.
Solutions
Solution 1: Combination + Hash Table
Assuming there are \(n\) pairs of numbers, for any two pairs of numbers \(a, b\) and \(c, d\) that satisfy the condition \(a \times b = c \times d\), there are a total of \(\mathrm{C}_n^2 = \frac{n \times (n-1)}{2}\) such combinations.
According to the problem description, each combination that satisfies the above condition can form \(8\) tuples that satisfy the problem requirements. Therefore, we can multiply the number of combinations with the same product by \(8\) (equivalent to left shifting by \(3\) bits) and add them up to get the result.
The time complexity is \(O(n^2)\), and the space complexity is \(O(n^2)\). Here, \(n\) is the length of the array.
1 2 3 4 5 6 7 8 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
|