Given a 1-indexed array of integers numbers that is already sorted in non-decreasing order, find two numbers such that they add up to a specific target number. Let these two numbers be numbers[index1] and numbers[index2] where 1 <= index1 < index2 <= numbers.length.
Return the indices of the two numbers, index1 and index2, added by one as an integer array [index1, index2] of length 2.
The tests are generated such that there is exactly one solution. You may not use the same element twice.
Your solution must use only constant extra space.
Example 1:
Input: numbers = [2,7,11,15], target = 9
Output: [1,2]
Explanation: The sum of 2 and 7 is 9. Therefore, index1 = 1, index2 = 2. We return [1, 2].
Example 2:
Input: numbers = [2,3,4], target = 6
Output: [1,3]
Explanation: The sum of 2 and 4 is 6. Therefore index1 = 1, index2 = 3. We return [1, 3].
Example 3:
Input: numbers = [-1,0], target = -1
Output: [1,2]
Explanation: The sum of -1 and 0 is -1. Therefore index1 = 1, index2 = 2. We return [1, 2].
Constraints:
2 <= numbers.length <= 3 * 104
-1000 <= numbers[i] <= 1000
numbers is sorted in non-decreasing order.
-1000 <= target <= 1000
The tests are generated such that there is exactly one solution.
Solutions
Solution 1: Binary Search
Note that the array is sorted in non-decreasing order, so for each numbers[i], we can find the position of target - numbers[i] by binary search, and return $[i + 1, j + 1]$ if it exists.
The time complexity is $O(n \times \log n)$, where $n$ is the length of the array numbers. The space complexity is $O(1)$.
We define two pointers $i$ and $j$, which point to the first element and the last element of the array respectively. Each time we calculate $numbers[i] + numbers[j]$. If the sum is equal to the target value, return $[i + 1, j + 1]$ directly. If the sum is less than the target value, move $i$ to the right by one position, and if the sum is greater than the target value, move $j$ to the left by one position.
The time complexity is $O(n)$, where $n$ is the length of the array numbers. The space complexity is $O(1)$.