1608. Special Array With X Elements Greater Than or Equal X
Description
You are given an array nums
of non-negative integers. nums
is considered special if there exists a number x
such that there are exactly x
numbers in nums
that are greater than or equal to x
.
Notice that x
does not have to be an element in nums
.
Return x
if the array is special, otherwise, return -1
. It can be proven that if nums
is special, the value for x
is unique.
Example 1:
Input: nums = [3,5] Output: 2 Explanation: There are 2 values (3 and 5) that are greater than or equal to 2.
Example 2:
Input: nums = [0,0] Output: -1 Explanation: No numbers fit the criteria for x. If x = 0, there should be 0 numbers >= x, but there are 2. If x = 1, there should be 1 number >= x, but there are 0. If x = 2, there should be 2 numbers >= x, but there are 0. x cannot be greater since there are only 2 numbers in nums.
Example 3:
Input: nums = [0,4,3,0,4] Output: 3 Explanation: There are 3 values that are greater than or equal to 3.
Constraints:
1 <= nums.length <= 100
0 <= nums[i] <= 1000
Solutions
Solution 1: Brute Force Enumeration
We enumerate $x$ in the range of $[1..n]$, and then count the number of elements in the array that are greater than or equal to $x$, denoted as $cnt$. If there exists $cnt$ equal to $x$, return $x$ directly.
The time complexity is $O(n^2)$, where $n$ is the length of the array. The space complexity is $O(1)$.
1 2 3 4 5 6 7 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 |
|
1 2 3 4 5 6 7 8 9 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |
|
Solution 2: Sorting + Binary Search
We can also sort nums
first.
Next, we still enumerate $x$, and use binary search to find the first element in nums
that is greater than or equal to $x$, quickly counting the number of elements in nums
that are greater than or equal to $x$.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Where $n$ is the length of the array.
1 2 3 4 5 6 7 8 9 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 |
|
1 2 3 4 5 6 7 8 9 10 11 12 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|