Skip to content

1589. Maximum Sum Obtained of Any Permutation

Description

We have an array of integers, nums, and an array of requests where requests[i] = [starti, endi]. The ith request asks for the sum of nums[starti] + nums[starti + 1] + ... + nums[endi - 1] + nums[endi]. Both starti and endi are 0-indexed.

Return the maximum total sum of all requests among all permutations of nums.

Since the answer may be too large, return it modulo 109 + 7.

 

Example 1:

Input: nums = [1,2,3,4,5], requests = [[1,3],[0,1]]
Output: 19
Explanation: One permutation of nums is [2,1,3,4,5] with the following result: 
requests[0] -> nums[1] + nums[2] + nums[3] = 1 + 3 + 4 = 8
requests[1] -> nums[0] + nums[1] = 2 + 1 = 3
Total sum: 8 + 3 = 11.
A permutation with a higher total sum is [3,5,4,2,1] with the following result:
requests[0] -> nums[1] + nums[2] + nums[3] = 5 + 4 + 2 = 11
requests[1] -> nums[0] + nums[1] = 3 + 5  = 8
Total sum: 11 + 8 = 19, which is the best that you can do.

Example 2:

Input: nums = [1,2,3,4,5,6], requests = [[0,1]]
Output: 11
Explanation: A permutation with the max total sum is [6,5,4,3,2,1] with request sums [11].

Example 3:

Input: nums = [1,2,3,4,5,10], requests = [[0,2],[1,3],[1,1]]
Output: 47
Explanation: A permutation with the max total sum is [4,10,5,3,2,1] with request sums [19,18,10].

 

Constraints:

  • n == nums.length
  • 1 <= n <= 105
  • 0 <= nums[i] <= 105
  • 1 <= requests.length <= 105
  • requests[i].length == 2
  • 0 <= starti <= endi < n

Solutions

Solution 1: Difference Array + Sorting + Greedy

We observe that for a query operation, it returns the sum of all elements in the query interval $[l, r]$. The problem requires the maximum sum of the results of all query operations, which means we need to accumulate the results of all query operations to maximize the sum. Therefore, if an index $i$ appears more frequently in the query operations, we should assign a larger value to index $i$ to maximize the sum of the results of all query operations.

Therefore, we can use the idea of a difference array to count the number of times each index appears in the query operations, then sort these counts in ascending order, and also sort the array $\textit{nums}$ in ascending order. This ensures that the more frequently an index $i$ appears in the query operations, the larger the value $\textit{nums}[i]$ corresponding to that index will be. Next, we only need to multiply the values $\textit{nums}[i]$ corresponding to these indices by the number of times they appear in the query operations, and then sum them up to get the maximum sum of the results of all query operations.

Time complexity $O(n \times \log n)$, space complexity $O(n)$. Where $n$ is the length of the array $\textit{nums}$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution:
    def maxSumRangeQuery(self, nums: List[int], requests: List[List[int]]) -> int:
        n = len(nums)
        d = [0] * n
        for l, r in requests:
            d[l] += 1
            if r + 1 < n:
                d[r + 1] -= 1
        for i in range(1, n):
            d[i] += d[i - 1]
        nums.sort()
        d.sort()
        mod = 10**9 + 7
        return sum(a * b for a, b in zip(nums, d)) % mod
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
    public int maxSumRangeQuery(int[] nums, int[][] requests) {
        int n = nums.length;
        int[] d = new int[n];
        for (var req : requests) {
            int l = req[0], r = req[1];
            d[l]++;
            if (r + 1 < n) {
                d[r + 1]--;
            }
        }
        for (int i = 1; i < n; ++i) {
            d[i] += d[i - 1];
        }
        Arrays.sort(nums);
        Arrays.sort(d);
        final int mod = (int) 1e9 + 7;
        long ans = 0;
        for (int i = 0; i < n; ++i) {
            ans = (ans + 1L * nums[i] * d[i]) % mod;
        }
        return (int) ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
class Solution {
public:
    int maxSumRangeQuery(vector<int>& nums, vector<vector<int>>& requests) {
        int n = nums.size();
        int d[n];
        memset(d, 0, sizeof(d));
        for (auto& req : requests) {
            int l = req[0], r = req[1];
            d[l]++;
            if (r + 1 < n) {
                d[r + 1]--;
            }
        }
        for (int i = 1; i < n; ++i) {
            d[i] += d[i - 1];
        }
        sort(nums.begin(), nums.end());
        sort(d, d + n);
        long long ans = 0;
        const int mod = 1e9 + 7;
        for (int i = 0; i < n; ++i) {
            ans = (ans + 1LL * nums[i] * d[i]) % mod;
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
func maxSumRangeQuery(nums []int, requests [][]int) (ans int) {
    n := len(nums)
    d := make([]int, n)
    for _, req := range requests {
        l, r := req[0], req[1]
        d[l]++
        if r+1 < n {
            d[r+1]--
        }
    }
    for i := 1; i < n; i++ {
        d[i] += d[i-1]
    }
    sort.Ints(nums)
    sort.Ints(d)
    const mod = 1e9 + 7
    for i, a := range nums {
        b := d[i]
        ans = (ans + a*b) % mod
    }
    return
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
function maxSumRangeQuery(nums: number[], requests: number[][]): number {
    const n = nums.length;
    const d = new Array(n).fill(0);
    for (const [l, r] of requests) {
        d[l]++;
        if (r + 1 < n) {
            d[r + 1]--;
        }
    }
    for (let i = 1; i < n; ++i) {
        d[i] += d[i - 1];
    }
    nums.sort((a, b) => a - b);
    d.sort((a, b) => a - b);
    let ans = 0;
    const mod = 10 ** 9 + 7;
    for (let i = 0; i < n; ++i) {
        ans = (ans + nums[i] * d[i]) % mod;
    }
    return ans;
}

Comments