Skip to content

1567. Maximum Length of Subarray With Positive Product

Description

Given an array of integers nums, find the maximum length of a subarray where the product of all its elements is positive.

A subarray of an array is a consecutive sequence of zero or more values taken out of that array.

Return the maximum length of a subarray with positive product.

 

Example 1:

Input: nums = [1,-2,-3,4]
Output: 4
Explanation: The array nums already has a positive product of 24.

Example 2:

Input: nums = [0,1,-2,-3,-4]
Output: 3
Explanation: The longest subarray with positive product is [1,-2,-3] which has a product of 6.
Notice that we cannot include 0 in the subarray since that'll make the product 0 which is not positive.

Example 3:

Input: nums = [-1,-2,-3,0,1]
Output: 2
Explanation: The longest subarray with positive product is [-1,-2] or [-2,-3].

 

Constraints:

  • 1 <= nums.length <= 105
  • -109 <= nums[i] <= 109

Solutions

Solution 1: Dynamic Programming

We define two arrays \(f\) and \(g\) of length \(n\), where \(f[i]\) represents the length of the longest subarray ending at \(\textit{nums}[i]\) with a positive product, and \(g[i]\) represents the length of the longest subarray ending at \(\textit{nums}[i]\) with a negative product.

Initially, if \(\textit{nums}[0] > 0\), then \(f[0] = 1\), otherwise \(f[0] = 0\); if \(\textit{nums}[0] < 0\), then \(g[0] = 1\), otherwise \(g[0] = 0\). We initialize the answer \(ans = f[0]\).

Next, we iterate through the array \(\textit{nums}\) starting from \(i = 1\). For each \(i\), we have the following cases:

  • If \(\textit{nums}[i] > 0\), then \(f[i]\) can be transferred from \(f[i - 1]\), i.e., \(f[i] = f[i - 1] + 1\), and the value of \(g[i]\) depends on whether \(g[i - 1]\) is \(0\). If \(g[i - 1] = 0\), then \(g[i] = 0\), otherwise \(g[i] = g[i - 1] + 1\);
  • If \(\textit{nums}[i] < 0\), then the value of \(f[i]\) depends on whether \(g[i - 1]\) is \(0\). If \(g[i - 1] = 0\), then \(f[i] = 0\), otherwise \(f[i] = g[i - 1] + 1\), and \(g[i]\) can be transferred from \(f[i - 1]\), i.e., \(g[i] = f[i - 1] + 1\).
  • Then, we update the answer \(ans = \max(ans, f[i])\).

After the iteration, we return the answer \(ans\).

The time complexity is \(O(n)\), and the space complexity is \(O(n)\). Here, \(n\) is the length of the array \(\textit{nums}\).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution:
    def getMaxLen(self, nums: List[int]) -> int:
        n = len(nums)
        f = [0] * n
        g = [0] * n
        f[0] = int(nums[0] > 0)
        g[0] = int(nums[0] < 0)
        ans = f[0]
        for i in range(1, n):
            if nums[i] > 0:
                f[i] = f[i - 1] + 1
                g[i] = 0 if g[i - 1] == 0 else g[i - 1] + 1
            elif nums[i] < 0:
                f[i] = 0 if g[i - 1] == 0 else g[i - 1] + 1
                g[i] = f[i - 1] + 1
            ans = max(ans, f[i])
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
    public int getMaxLen(int[] nums) {
        int n = nums.length;
        int[] f = new int[n];
        int[] g = new int[n];
        f[0] = nums[0] > 0 ? 1 : 0;
        g[0] = nums[0] < 0 ? 1 : 0;
        int ans = f[0];
        for (int i = 1; i < n; ++i) {
            if (nums[i] > 0) {
                f[i] = f[i - 1] + 1;
                g[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
            } else if (nums[i] < 0) {
                f[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
                g[i] = f[i - 1] + 1;
            }
            ans = Math.max(ans, f[i]);
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
class Solution {
public:
    int getMaxLen(vector<int>& nums) {
        int n = nums.size();
        vector<int> f(n, 0), g(n, 0);
        f[0] = nums[0] > 0 ? 1 : 0;
        g[0] = nums[0] < 0 ? 1 : 0;
        int ans = f[0];

        for (int i = 1; i < n; ++i) {
            if (nums[i] > 0) {
                f[i] = f[i - 1] + 1;
                g[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
            } else if (nums[i] < 0) {
                f[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
                g[i] = f[i - 1] + 1;
            }
            ans = max(ans, f[i]);
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
func getMaxLen(nums []int) int {
    n := len(nums)
    f := make([]int, n)
    g := make([]int, n)
    if nums[0] > 0 {
        f[0] = 1
    }
    if nums[0] < 0 {
        g[0] = 1
    }
    ans := f[0]

    for i := 1; i < n; i++ {
        if nums[i] > 0 {
            f[i] = f[i-1] + 1
            if g[i-1] > 0 {
                g[i] = g[i-1] + 1
            } else {
                g[i] = 0
            }
        } else if nums[i] < 0 {
            if g[i-1] > 0 {
                f[i] = g[i-1] + 1
            } else {
                f[i] = 0
            }
            g[i] = f[i-1] + 1
        }
        ans = max(ans, f[i])
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
function getMaxLen(nums: number[]): number {
    const n = nums.length;
    const f: number[] = Array(n).fill(0);
    const g: number[] = Array(n).fill(0);

    if (nums[0] > 0) {
        f[0] = 1;
    }
    if (nums[0] < 0) {
        g[0] = 1;
    }

    let ans = f[0];
    for (let i = 1; i < n; i++) {
        if (nums[i] > 0) {
            f[i] = f[i - 1] + 1;
            g[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
        } else if (nums[i] < 0) {
            f[i] = g[i - 1] > 0 ? g[i - 1] + 1 : 0;
            g[i] = f[i - 1] + 1;
        }

        ans = Math.max(ans, f[i]);
    }

    return ans;
}

Solution 2: Dynamic Programming (Space Optimization)

We observe that for each \(i\), the values of \(f[i]\) and \(g[i]\) only depend on \(f[i - 1]\) and \(g[i - 1]\). Therefore, we can use two variables \(f\) and \(g\) to record the values of \(f[i - 1]\) and \(g[i - 1]\), respectively, thus optimizing the space complexity to \(O(1)\).

The time complexity is \(O(n)\), where \(n\) is the length of the array \(\textit{nums}\). The space complexity is \(O(1)\).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
class Solution:
    def getMaxLen(self, nums: List[int]) -> int:
        n = len(nums)
        f = int(nums[0] > 0)
        g = int(nums[0] < 0)
        ans = f
        for i in range(1, n):
            ff = gg = 0
            if nums[i] > 0:
                ff = f + 1
                gg = 0 if g == 0 else g + 1
            elif nums[i] < 0:
                ff = 0 if g == 0 else g + 1
                gg = f + 1
            f, g = ff, gg
            ans = max(ans, f)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
    public int getMaxLen(int[] nums) {
        int n = nums.length;
        int f = nums[0] > 0 ? 1 : 0;
        int g = nums[0] < 0 ? 1 : 0;
        int ans = f;

        for (int i = 1; i < n; i++) {
            int ff = 0, gg = 0;
            if (nums[i] > 0) {
                ff = f + 1;
                gg = g == 0 ? 0 : g + 1;
            } else if (nums[i] < 0) {
                ff = g == 0 ? 0 : g + 1;
                gg = f + 1;
            }
            f = ff;
            g = gg;
            ans = Math.max(ans, f);
        }

        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution {
public:
    int getMaxLen(vector<int>& nums) {
        int n = nums.size();
        int f = nums[0] > 0 ? 1 : 0;
        int g = nums[0] < 0 ? 1 : 0;
        int ans = f;

        for (int i = 1; i < n; i++) {
            int ff = 0, gg = 0;
            if (nums[i] > 0) {
                ff = f + 1;
                gg = g == 0 ? 0 : g + 1;
            } else if (nums[i] < 0) {
                ff = g == 0 ? 0 : g + 1;
                gg = f + 1;
            }
            f = ff;
            g = gg;
            ans = max(ans, f);
        }

        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
func getMaxLen(nums []int) int {
    n := len(nums)
    var f, g int
    if nums[0] > 0 {
        f = 1
    } else if nums[0] < 0 {
        g = 1
    }
    ans := f
    for i := 1; i < n; i++ {
        ff, gg := 0, 0
        if nums[i] > 0 {
            ff = f + 1
            gg = 0
            if g > 0 {
                gg = g + 1
            }
        } else if nums[i] < 0 {
            ff = 0
            if g > 0 {
                ff = g + 1
            }
            gg = f + 1
        }
        f, g = ff, gg
        ans = max(ans, f)
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
function getMaxLen(nums: number[]): number {
    const n = nums.length;
    let [f, g] = [0, 0];
    if (nums[0] > 0) {
        f = 1;
    } else if (nums[0] < 0) {
        g = 1;
    }
    let ans = f;
    for (let i = 1; i < n; i++) {
        let [ff, gg] = [0, 0];
        if (nums[i] > 0) {
            ff = f + 1;
            gg = g > 0 ? g + 1 : 0;
        } else if (nums[i] < 0) {
            ff = g > 0 ? g + 1 : 0;
            gg = f + 1;
        }
        [f, g] = [ff, gg];
        ans = Math.max(ans, f);
    }
    return ans;
}

Comments