1561. Maximum Number of Coins You Can Get
Description
There are 3n
piles of coins of varying size, you and your friends will take piles of coins as follows:
- In each step, you will choose any
3
piles of coins (not necessarily consecutive). - Of your choice, Alice will pick the pile with the maximum number of coins.
- You will pick the next pile with the maximum number of coins.
- Your friend Bob will pick the last pile.
- Repeat until there are no more piles of coins.
Given an array of integers piles
where piles[i]
is the number of coins in the ith
pile.
Return the maximum number of coins that you can have.
Example 1:
Input: piles = [2,4,1,2,7,8] Output: 9 Explanation: Choose the triplet (2, 7, 8), Alice Pick the pile with 8 coins, you the pile with 7 coins and Bob the last one. Choose the triplet (1, 2, 4), Alice Pick the pile with 4 coins, you the pile with 2 coins and Bob the last one. The maximum number of coins which you can have are: 7 + 2 = 9. On the other hand if we choose this arrangement (1, 2, 8), (2, 4, 7) you only get 2 + 4 = 6 coins which is not optimal.
Example 2:
Input: piles = [2,4,5] Output: 4
Example 3:
Input: piles = [9,8,7,6,5,1,2,3,4] Output: 18
Constraints:
3 <= piles.length <= 105
piles.length % 3 == 0
1 <= piles[i] <= 104
Solutions
Solution 1: Greedy + Sorting
To maximize the number of coins we get, we can greedily let Bob take the smallest $n$ piles of coins. Each time, we let Alice take the largest pile of coins, then we take the second largest pile of coins, and so on, until there are no more coins to take.
The time complexity is $O(n \times \log n)$, and the space complexity is $O(\log n)$. Here, $n$ is the number of piles of coins.
1 2 3 4 |
|
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 |
|
1 2 3 4 5 6 7 |
|
1 2 3 4 5 6 7 8 |
|
1 2 3 4 5 6 7 8 9 10 |
|
1 2 3 4 5 6 7 8 9 10 11 12 |
|