Skip to content

152. Maximum Product Subarray

Description

Given an integer array nums, find a subarray that has the largest product, and return the product.

The test cases are generated so that the answer will fit in a 32-bit integer.

 

Example 1:

Input: nums = [2,3,-2,4]
Output: 6
Explanation: [2,3] has the largest product 6.

Example 2:

Input: nums = [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.

 

Constraints:

  • 1 <= nums.length <= 2 * 104
  • -10 <= nums[i] <= 10
  • The product of any subarray of nums is guaranteed to fit in a 32-bit integer.

Solutions

Solution 1

1
2
3
4
5
6
7
8
9
class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        ans = f = g = nums[0]
        for x in nums[1:]:
            ff, gg = f, g
            f = max(x, ff * x, gg * x)
            g = min(x, ff * x, gg * x)
            ans = max(ans, f)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class Solution {
    public int maxProduct(int[] nums) {
        int f = nums[0], g = nums[0], ans = nums[0];
        for (int i = 1; i < nums.length; ++i) {
            int ff = f, gg = g;
            f = Math.max(nums[i], Math.max(ff * nums[i], gg * nums[i]));
            g = Math.min(nums[i], Math.min(ff * nums[i], gg * nums[i]));
            ans = Math.max(ans, f);
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
class Solution {
public:
    int maxProduct(vector<int>& nums) {
        int f = nums[0], g = nums[0], ans = nums[0];
        for (int i = 1; i < nums.size(); ++i) {
            int ff = f, gg = g;
            f = max({nums[i], ff * nums[i], gg * nums[i]});
            g = min({nums[i], ff * nums[i], gg * nums[i]});
            ans = max(ans, f);
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
func maxProduct(nums []int) int {
    f, g, ans := nums[0], nums[0], nums[0]
    for _, x := range nums[1:] {
        ff, gg := f, g
        f = max(x, max(ff*x, gg*x))
        g = min(x, min(ff*x, gg*x))
        ans = max(ans, f)
    }
    return ans
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
function maxProduct(nums: number[]): number {
    let [f, g, ans] = [nums[0], nums[0], nums[0]];
    for (let i = 1; i < nums.length; ++i) {
        const [ff, gg] = [f, g];
        f = Math.max(nums[i], ff * nums[i], gg * nums[i]);
        g = Math.min(nums[i], ff * nums[i], gg * nums[i]);
        ans = Math.max(ans, f);
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
impl Solution {
    pub fn max_product(nums: Vec<i32>) -> i32 {
        let mut f = nums[0];
        let mut g = nums[0];
        let mut ans = nums[0];
        for &x in nums.iter().skip(1) {
            let (ff, gg) = (f, g);
            f = x.max(x * ff).max(x * gg);
            g = x.min(x * ff).min(x * gg);
            ans = ans.max(f);
        }
        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
/**
 * @param {number[]} nums
 * @return {number}
 */
var maxProduct = function (nums) {
    let [f, g, ans] = [nums[0], nums[0], nums[0]];
    for (let i = 1; i < nums.length; ++i) {
        const [ff, gg] = [f, g];
        f = Math.max(nums[i], ff * nums[i], gg * nums[i]);
        g = Math.min(nums[i], ff * nums[i], gg * nums[i]);
        ans = Math.max(ans, f);
    }
    return ans;
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
public class Solution {
    public int MaxProduct(int[] nums) {
        int f = nums[0], g = nums[0], ans = nums[0];
        for (int i = 1; i < nums.Length; ++i) {
            int ff = f, gg = g;
            f = Math.Max(nums[i], Math.Max(ff * nums[i], gg * nums[i]));
            g = Math.Min(nums[i], Math.Min(ff * nums[i], gg * nums[i]));
            ans = Math.Max(ans, f);
        }
        return ans;
    }
}

Comments