Skip to content

1461. Check If a String Contains All Binary Codes of Size K

Description

Given a binary string s and an integer k, return true if every binary code of length k is a substring of s. Otherwise, return false.

 

Example 1:

Input: s = "00110110", k = 2
Output: true
Explanation: The binary codes of length 2 are "00", "01", "10" and "11". They can be all found as substrings at indices 0, 1, 3 and 2 respectively.

Example 2:

Input: s = "0110", k = 1
Output: true
Explanation: The binary codes of length 1 are "0" and "1", it is clear that both exist as a substring. 

Example 3:

Input: s = "0110", k = 2
Output: false
Explanation: The binary code "00" is of length 2 and does not exist in the array.

 

Constraints:

  • 1 <= s.length <= 5 * 105
  • s[i] is either '0' or '1'.
  • 1 <= k <= 20

Solutions

Solution 1: Hash Table

First, for a string $s$ of length $n$, the number of substrings of length $k$ is $n - k + 1$. If $n - k + 1 < 2^k$, then there must exist a binary string of length $k$ that is not a substring of $s$, so we return false.

Next, we traverse the string $s$ and store all substrings of length $k$ in a set $ss$. Finally, we check if the size of the set $ss$ is equal to $2^k$.

The time complexity is $O(n \times k)$, and the space complexity is $O(n)$. Here, $n$ is the length of the string $s$.

1
2
3
4
5
6
7
8
class Solution:
    def hasAllCodes(self, s: str, k: int) -> bool:
        n = len(s)
        m = 1 << k
        if n - k + 1 < m:
            return False
        ss = {s[i : i + k] for i in range(n - k + 1)}
        return len(ss) == m
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
class Solution {
    public boolean hasAllCodes(String s, int k) {
        int n = s.length();
        int m = 1 << k;
        if (n - k + 1 < m) {
            return false;
        }
        Set<String> ss = new HashSet<>();
        for (int i = 0; i < n - k + 1; ++i) {
            ss.add(s.substring(i, i + k));
        }
        return ss.size() == m;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution {
public:
    bool hasAllCodes(string s, int k) {
        int n = s.size();
        int m = 1 << k;
        if (n - k + 1 < m) {
            return false;
        }
        unordered_set<string> ss;
        for (int i = 0; i + k <= n; ++i) {
            ss.insert(move(s.substr(i, k)));
        }
        return ss.size() == m;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
func hasAllCodes(s string, k int) bool {
    n, m := len(s), 1<<k
    if n-k+1 < m {
        return false
    }
    ss := map[string]bool{}
    for i := 0; i+k <= n; i++ {
        ss[s[i:i+k]] = true
    }
    return len(ss) == m
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
function hasAllCodes(s: string, k: number): boolean {
    const n = s.length;
    const m = 1 << k;
    if (n - k + 1 < m) {
        return false;
    }
    const ss = new Set<string>();
    for (let i = 0; i + k <= n; ++i) {
        ss.add(s.slice(i, i + k));
    }
    return ss.size === m;
}

Solution 2: Sliding Window

In Solution 1, we stored all distinct substrings of length $k$, and processing each substring requires $O(k)$ time. We can instead use a sliding window, where each time we add the latest character, we remove the leftmost character from the window. During this process, we use an integer $x$ to store the substring.

The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the length of the string $s$.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
class Solution:
    def hasAllCodes(self, s: str, k: int) -> bool:
        n = len(s)
        m = 1 << k
        if n - k + 1 < m:
            return False
        ss = set()
        x = int(s[:k], 2)
        ss.add(x)
        for i in range(k, n):
            a = int(s[i - k]) << (k - 1)
            b = int(s[i])
            x = (x - a) << 1 | b
            ss.add(x)
        return len(ss) == m
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class Solution {
    public boolean hasAllCodes(String s, int k) {
        int n = s.length();
        int m = 1 << k;
        if (n - k + 1 < m) {
            return false;
        }
        boolean[] ss = new boolean[m];
        int x = Integer.parseInt(s.substring(0, k), 2);
        ss[x] = true;
        for (int i = k; i < n; ++i) {
            int a = (s.charAt(i - k) - '0') << (k - 1);
            int b = s.charAt(i) - '0';
            x = (x - a) << 1 | b;
            ss[x] = true;
        }
        for (boolean v : ss) {
            if (!v) {
                return false;
            }
        }
        return true;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
class Solution {
public:
    bool hasAllCodes(string s, int k) {
        int n = s.size();
        int m = 1 << k;
        if (n - k + 1 < m) {
            return false;
        }
        bool ss[m];
        memset(ss, false, sizeof(ss));
        int x = stoi(s.substr(0, k), nullptr, 2);
        ss[x] = true;
        for (int i = k; i < n; ++i) {
            int a = (s[i - k] - '0') << (k - 1);
            int b = s[i] - '0';
            x = (x - a) << 1 | b;
            ss[x] = true;
        }
        return all_of(ss, ss + m, [](bool v) { return v; });
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
func hasAllCodes(s string, k int) bool {
    n, m := len(s), 1<<k
    if n-k+1 < m {
        return false
    }
    ss := make([]bool, m)
    x, _ := strconv.ParseInt(s[:k], 2, 64)
    ss[x] = true
    for i := k; i < n; i++ {
        a := int64(s[i-k]-'0') << (k - 1)
        b := int64(s[i] - '0')
        x = (x-a)<<1 | b
        ss[x] = true
    }
    for _, v := range ss {
        if !v {
            return false
        }
    }
    return true
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
function hasAllCodes(s: string, k: number): boolean {
    const n = s.length;
    const m = 1 << k;
    if (n - k + 1 < m) {
        return false;
    }
    let x = +`0b${s.slice(0, k)}`;
    const ss = new Set<number>();
    ss.add(x);
    for (let i = k; i < n; ++i) {
        const a = +s[i - k] << (k - 1);
        const b = +s[i];
        x = ((x - a) << 1) | b;
        ss.add(x);
    }
    return ss.size === m;
}

Comments