1253. Reconstruct a 2-Row Binary Matrix
Description
Given the following details of a matrix with n
columns and 2
rows :
- The matrix is a binary matrix, which means each element in the matrix can be
0
or1
. - The sum of elements of the 0-th(upper) row is given as
upper
. - The sum of elements of the 1-st(lower) row is given as
lower
. - The sum of elements in the i-th column(0-indexed) is
colsum[i]
, wherecolsum
is given as an integer array with lengthn
.
Your task is to reconstruct the matrix with upper
, lower
and colsum
.
Return it as a 2-D integer array.
If there are more than one valid solution, any of them will be accepted.
If no valid solution exists, return an empty 2-D array.
Example 1:
Input: upper = 2, lower = 1, colsum = [1,1,1] Output: [[1,1,0],[0,0,1]] Explanation: [[1,0,1],[0,1,0]], and [[0,1,1],[1,0,0]] are also correct answers.
Example 2:
Input: upper = 2, lower = 3, colsum = [2,2,1,1] Output: []
Example 3:
Input: upper = 5, lower = 5, colsum = [2,1,2,0,1,0,1,2,0,1] Output: [[1,1,1,0,1,0,0,1,0,0],[1,0,1,0,0,0,1,1,0,1]]
Constraints:
1 <= colsum.length <= 10^5
0 <= upper, lower <= colsum.length
0 <= colsum[i] <= 2
Solutions
Solution 1: Greedy
First, we create an answer array $ans$, where $ans[0]$ and $ans[1]$ represent the first and second rows of the matrix, respectively.
Next, we traverse the array $colsum$ from left to right. For the current element $colsum[j]$, we have the following cases:
- If $colsum[j] = 2$, then we set both $ans[0][j]$ and $ans[1][j]$ to $1$. In this case, both $upper$ and $lower$ are reduced by $1$.
- If $colsum[j] = 1$, then we set either $ans[0][j]$ or $ans[1][j]$ to $1$. If $upper \gt lower$, then we prefer to set $ans[0][j]$ to $1$; otherwise, we prefer to set $ans[1][j]$ to $1$. In this case, either $upper$ or $lower$ is reduced by $1$.
- If $colsum[j] = 0$, then we set both $ans[0][j]$ and $ans[1][j]$ to $0$.
- If $upper \lt 0$ or $lower \lt 0$, then it is impossible to construct a matrix that meets the requirements, and we return an empty array.
At the end of the traversal, if both $upper$ and $lower$ are $0$, then we return $ans$; otherwise, we return an empty array.
The time complexity is $O(n)$, where $n$ is the length of the array $colsum$. Ignoring the space consumption of the answer array, the space complexity is $O(1)$.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
|