1223. Dice Roll Simulation
Description
A die simulator generates a random number from 1
to 6
for each roll. You introduced a constraint to the generator such that it cannot roll the number i
more than rollMax[i]
(1-indexed) consecutive times.
Given an array of integers rollMax
and an integer n
, return the number of distinct sequences that can be obtained with exact n
rolls. Since the answer may be too large, return it modulo 109 + 7
.
Two sequences are considered different if at least one element differs from each other.
Example 1:
Input: n = 2, rollMax = [1,1,2,2,2,3] Output: 34 Explanation: There will be 2 rolls of die, if there are no constraints on the die, there are 6 * 6 = 36 possible combinations. In this case, looking at rollMax array, the numbers 1 and 2 appear at most once consecutively, therefore sequences (1,1) and (2,2) cannot occur, so the final answer is 36-2 = 34.
Example 2:
Input: n = 2, rollMax = [1,1,1,1,1,1] Output: 30
Example 3:
Input: n = 3, rollMax = [1,1,1,2,2,3] Output: 181
Constraints:
1 <= n <= 5000
rollMax.length == 6
1 <= rollMax[i] <= 15
Solutions
Solution 1: Memoization Search
We can design a function $dfs(i, j, x)$ to represent the number of schemes starting from the $i$-th dice roll, with the current dice roll being $j$, and the number of consecutive times $j$ is rolled being $x$. The range of $j$ is $[1, 6]$, and the range of $x$ is $[1, rollMax[j - 1]]$. The answer is $dfs(0, 0, 0)$.
The calculation process of the function $dfs(i, j, x)$ is as follows:
- If $i \ge n$, it means that $n$ dice have been rolled, return $1$.
- Otherwise, we enumerate the number $k$ rolled next time. If $k \ne j$, we can directly roll $k$, and the number of consecutive times $j$ is rolled will be reset to $1$, so the number of schemes is $dfs(i + 1, k, 1)$. If $k = j$, we need to judge whether $x$ is less than $rollMax[j - 1]$. If it is less, we can continue to roll $j$, and the number of consecutive times $j$ is rolled will increase by $1$, so the number of schemes is $dfs(i + 1, j, x + 1)$. Finally, add all the scheme numbers to get the value of $dfs(i, j, x)$. Note that the answer may be very large, so we need to take the modulus of $10^9 + 7$.
During the process, we can use memoization search to avoid repeated calculations.
The time complexity is $O(n \times k^2 \times M)$, and the space complexity is $O(n \times k \times M)$. Here, $k$ is the range of dice points, and $M$ is the maximum number of times a certain point can be rolled consecutively.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
|
Solution 2: Dynamic Programming
We can change the memoization search in Solution 1 to dynamic programming.
Define $f[i][j][x]$ as the number of schemes for the first $i$ dice rolls, with the $i$-th dice roll being $j$, and the number of consecutive times $j$ is rolled being $x$. Initially, $f[1][j][1] = 1$, where $1 \leq j \leq 6$. The answer is:
$$ \sum_{j=1}^6 \sum_{x=1}^{rollMax[j-1]} f[n][j][x] $$
We enumerate the last dice roll as $j$, and the number of consecutive times $j$ is rolled as $x$. The current dice roll can be $1, 2, \cdots, 6$. If the current dice roll is $k$, there are two cases:
- If $k \neq j$, we can directly roll $k$, and the number of consecutive times $j$ is rolled will be reset to $1$. Therefore, the number of schemes $f[i][k][1]$ will increase by $f[i-1][j][x]$.
- If $k = j$, we need to judge whether $x+1$ is less than or equal to $rollMax[j-1]$. If it is less than or equal to, we can continue to roll $j$, and the number of consecutive times $j$ is rolled will increase by $1$. Therefore, the number of schemes $f[i][j][x+1]$ will increase by $f[i-1][j][x]$.
The final answer is the sum of all $f[n][j][x]$.
The time complexity is $O(n \times k^2 \times M)$, and the space complexity is $O(n \times k \times M)$. Here, $k$ is the range of dice points, and $M$ is the maximum number of times a certain point can be rolled consecutively.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
|
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
|