Given two integer arrays inorder and postorder where inorder is the inorder traversal of a binary tree and postorder is the postorder traversal of the same tree, construct and return the binary tree.
inorder is guaranteed to be the inorder traversal of the tree.
postorder is guaranteed to be the postorder traversal of the tree.
Solutions
Solution 1: Hash Table + Recursion
The last node in the post-order traversal is the root node. We can find the position of the root node in the in-order traversal, and then recursively construct the left and right subtrees.
Specifically, we first use a hash table $d$ to store the position of each node in the in-order traversal. Then we design a recursive function $dfs(i, j, n)$, where $i$ and $j$ represent the starting positions of the in-order and post-order traversals, respectively, and $n$ represents the number of nodes in the subtree. The function logic is as follows:
If $n \leq 0$, it means the subtree is empty, return a null node.
Otherwise, take out the last node $v$ of the post-order traversal, and then find the position $k$ of $v$ in the in-order traversal using the hash table $d$. Then the number of nodes in the left subtree is $k - i$, and the number of nodes in the right subtree is $n - k + i - 1$.
Recursively construct the left subtree $dfs(i, j, k - i)$ and the right subtree $dfs(k + 1, j + k - i, n - k + i - 1)$, connect them to the root node, and finally return the root node.
The time complexity is $O(n)$, and the space complexity is $O(n)$. Here, $n$ is the number of nodes in the binary tree.
1 2 3 4 5 6 7 8 910111213141516171819
# Definition for a binary tree node.# class TreeNode:# def __init__(self, val=0, left=None, right=None):# self.val = val# self.left = left# self.right = rightclassSolution:defbuildTree(self,inorder:List[int],postorder:List[int])->Optional[TreeNode]:defdfs(i:int,j:int,n:int)->Optional[TreeNode]:ifn<=0:returnNonev=postorder[j+n-1]k=d[v]l=dfs(i,j,k-i)r=dfs(k+1,j+k-i,n-k+i-1)returnTreeNode(v,l,r)d={v:ifori,vinenumerate(inorder)}returndfs(0,0,len(inorder))
/** * Definition for a binary tree node. * type TreeNode struct { * Val int * Left *TreeNode * Right *TreeNode * } */funcbuildTree(inorder[]int,postorder[]int)*TreeNode{d:=map[int]int{}fori,v:=rangeinorder{d[v]=i}vardfsfunc(i,j,nint)*TreeNodedfs=func(i,j,nint)*TreeNode{ifn<=0{returnnil}v:=postorder[j+n-1]k:=d[v]l:=dfs(i,j,k-i)r:=dfs(k+1,j+k-i,n-k+i-1)return&TreeNode{v,l,r}}returndfs(0,0,len(inorder))}