Skip to content

102. Binary Tree Level Order Traversal

Description

Given the root of a binary tree, return the level order traversal of its nodes' values. (i.e., from left to right, level by level).

 

Example 1:

Input: root = [3,9,20,null,null,15,7]
Output: [[3],[9,20],[15,7]]

Example 2:

Input: root = [1]
Output: [[1]]

Example 3:

Input: root = []
Output: []

 

Constraints:

  • The number of nodes in the tree is in the range [0, 2000].
  • -1000 <= Node.val <= 1000

Solutions

Solution 1: BFS

We can use the BFS method to solve this problem. First, enqueue the root node, then continuously perform the following operations until the queue is empty:

  • Traverse all nodes in the current queue, store their values in a temporary array \(t\), and then enqueue their child nodes.
  • Store the temporary array \(t\) in the answer array.

Finally, return the answer array.

The time complexity is \(O(n)\), and the space complexity is \(O(n)\). Here, \(n\) is the number of nodes in the binary tree.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def levelOrder(self, root: Optional[TreeNode]) -> List[List[int]]:
        ans = []
        if root is None:
            return ans
        q = deque([root])
        while q:
            t = []
            for _ in range(len(q)):
                node = q.popleft()
                t.append(node.val)
                if node.left:
                    q.append(node.left)
                if node.right:
                    q.append(node.right)
            ans.append(t)
        return ans
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> ans = new ArrayList<>();
        if (root == null) {
            return ans;
        }
        Deque<TreeNode> q = new ArrayDeque<>();
        q.offer(root);
        while (!q.isEmpty()) {
            List<Integer> t = new ArrayList<>();
            for (int n = q.size(); n > 0; --n) {
                TreeNode node = q.poll();
                t.add(node.val);
                if (node.left != null) {
                    q.offer(node.left);
                }
                if (node.right != null) {
                    q.offer(node.right);
                }
            }
            ans.add(t);
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    vector<vector<int>> levelOrder(TreeNode* root) {
        vector<vector<int>> ans;
        if (!root) return ans;
        queue<TreeNode*> q{{root}};
        while (!q.empty()) {
            vector<int> t;
            for (int n = q.size(); n; --n) {
                auto node = q.front();
                q.pop();
                t.push_back(node->val);
                if (node->left) {
                    q.push(node->left);
                }
                if (node->right) {
                    q.push(node->right);
                }
            }
            ans.push_back(t);
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func levelOrder(root *TreeNode) (ans [][]int) {
    if root == nil {
        return
    }
    q := []*TreeNode{root}
    for len(q) > 0 {
        t := []int{}
        for n := len(q); n > 0; n-- {
            node := q[0]
            q = q[1:]
            t = append(t, node.Val)
            if node.Left != nil {
                q = append(q, node.Left)
            }
            if node.Right != nil {
                q = append(q, node.Right)
            }
        }
        ans = append(ans, t)
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function levelOrder(root: TreeNode | null): number[][] {
    const ans: number[][] = [];
    if (!root) {
        return ans;
    }
    const q: TreeNode[] = [root];
    while (q.length) {
        const t: number[] = [];
        const qq: TreeNode[] = [];
        for (const { val, left, right } of q) {
            t.push(val);
            left && qq.push(left);
            right && qq.push(right);
        }
        ans.push(t);
        q.splice(0, q.length, ...qq);
    }
    return ans;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::collections::VecDeque;
use std::rc::Rc;
impl Solution {
    pub fn level_order(root: Option<Rc<RefCell<TreeNode>>>) -> Vec<Vec<i32>> {
        let mut ans = Vec::new();
        if let Some(root_node) = root {
            let mut q = VecDeque::new();
            q.push_back(root_node);
            while !q.is_empty() {
                let mut t = Vec::new();
                for _ in 0..q.len() {
                    if let Some(node) = q.pop_front() {
                        let node_ref = node.borrow();
                        t.push(node_ref.val);
                        if let Some(ref left) = node_ref.left {
                            q.push_back(Rc::clone(left));
                        }
                        if let Some(ref right) = node_ref.right {
                            q.push_back(Rc::clone(right));
                        }
                    }
                }
                ans.push(t);
            }
        }
        ans
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {number[][]}
 */
var levelOrder = function (root) {
    const ans = [];
    if (!root) {
        return ans;
    }
    const q = [root];
    while (q.length) {
        const t = [];
        const qq = [];
        for (const { val, left, right } of q) {
            t.push(val);
            left && qq.push(left);
            right && qq.push(right);
        }
        ans.push(t);
        q.splice(0, q.length, ...qq);
    }
    return ans;
};

Comments