跳转至

剑指 Offer II 088. 爬楼梯的最少成本

题目描述

数组的每个下标作为一个阶梯,第 i 个阶梯对应着一个非负数的体力花费值 cost[i](下标从 0 开始)。

每当爬上一个阶梯都要花费对应的体力值,一旦支付了相应的体力值,就可以选择向上爬一个阶梯或者爬两个阶梯。

请找出达到楼层顶部的最低花费。在开始时,你可以选择从下标为 0 或 1 的元素作为初始阶梯。

 

示例 1:

输入:cost = [10, 15, 20]
输出:15
解释:最低花费是从 cost[1] 开始,然后走两步即可到阶梯顶,一共花费 15 。

 示例 2:

输入:cost = [1, 100, 1, 1, 1, 100, 1, 1, 100, 1]
输出:6
解释:最低花费方式是从 cost[0] 开始,逐个经过那些 1 ,跳过 cost[3] ,一共花费 6 。

 

提示:

  • 2 <= cost.length <= 1000
  • 0 <= cost[i] <= 999

 

注意:本题与主站 746 题相同: https://leetcode.cn/problems/min-cost-climbing-stairs/

解法

方法一:动态规划

定义 dp[i] 表示到达第 i 个台阶的最小花费。可以得到状态转移方程:

$$ dp[i] = \min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]) $$

最终结果为 dp[n]。其中 $n$ 表示 cost 数组的长度。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。

由于 dp[i] 只跟 dp[i-1]dp[i-2] 有关,因此我们还可以对空间进行优化,只用两个变量 a, b 来记录。

时间复杂度 $O(n)$,空间复杂度 $O(1)$。

1
2
3
4
5
6
7
class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        n = len(cost)
        dp = [0] * (n + 1)
        for i in range(2, n + 1):
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
        return dp[-1]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int n = cost.length;
        int[] dp = new int[n + 1];
        for (int i = 2; i <= n; ++i) {
            dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[n];
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int n = cost.size();
        vector<int> dp(n + 1);
        for (int i = 2; i <= n; ++i) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[n];
    }
};
1
2
3
4
5
6
7
8
func minCostClimbingStairs(cost []int) int {
    n := len(cost)
    dp := make([]int, n+1)
    for i := 2; i <= n; i++ {
        dp[i] = min(dp[i-1]+cost[i-1], dp[i-2]+cost[i-2])
    }
    return dp[n]
}
1
2
3
4
5
6
7
8
function minCostClimbingStairs(cost: number[]): number {
    const n = cost.length;
    const dp = new Array(n + 1).fill(0);
    for (let i = 2; i <= n; ++i) {
        dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
    }
    return dp[n];
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
class Solution {
    func minCostClimbingStairs(_ cost: [Int]) -> Int {
        let n = cost.count
        var dp = Array(repeating: 0, count: n + 1)
        for i in 2...n {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
        }
        return dp[n]
    }
}

方法二

1
2
3
4
5
6
class Solution:
    def minCostClimbingStairs(self, cost: List[int]) -> int:
        a = b = 0
        for i in range(1, len(cost)):
            a, b = b, min(a + cost[i - 1], b + cost[i])
        return b
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution {
    public int minCostClimbingStairs(int[] cost) {
        int a = 0, b = 0;
        for (int i = 1; i < cost.length; ++i) {
            int c = Math.min(a + cost[i - 1], b + cost[i]);
            a = b;
            b = c;
        }
        return b;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int a = 0, b = 0;
        for (int i = 1; i < cost.size(); ++i) {
            int c = min(a + cost[i - 1], b + cost[i]);
            a = b;
            b = c;
        }
        return b;
    }
};
1
2
3
4
5
6
7
func minCostClimbingStairs(cost []int) int {
    a, b := 0, 0
    for i := 1; i < len(cost); i++ {
        a, b = b, min(a+cost[i-1], b+cost[i])
    }
    return b
}
1
2
3
4
5
6
7
8
function minCostClimbingStairs(cost: number[]): number {
    let a = 0,
        b = 0;
    for (let i = 1; i < cost.length; ++i) {
        [a, b] = [b, Math.min(a + cost[i - 1], b + cost[i])];
    }
    return b;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
class Solution {
    func minCostClimbingStairs(_ cost: [Int]) -> Int {
        var a = 0
        var b = 0
        for i in 1..<cost.count {
            let c = min(a + cost[i - 1], b + cost[i])
            a = b
            b = c
        }
        return b
    }
}

评论