题目描述
给定一个数组 points
,其中 points[i] = [xi, yi]
表示 X-Y 平面上的一个点,并且是一个整数 k
,返回离原点 (0,0)
最近的 k
个点。
这里,平面上两点之间的距离是 欧几里德距离( √(x1 - x2)2 + (y1 - y2)2
)。
你可以按 任何顺序 返回答案。除了点坐标的顺序之外,答案 确保 是 唯一 的。
示例 1:
输入:points = [[1,3],[-2,2]], k = 1
输出:[[-2,2]]
解释:
(1, 3) 和原点之间的距离为 sqrt(10),
(-2, 2) 和原点之间的距离为 sqrt(8),
由于 sqrt(8) < sqrt(10),(-2, 2) 离原点更近。
我们只需要距离原点最近的 K = 1 个点,所以答案就是 [[-2,2]]。
示例 2:
输入:points = [[3,3],[5,-1],[-2,4]], k = 2
输出:[[3,3],[-2,4]]
(答案 [[-2,4],[3,3]] 也会被接受。)
提示:
1 <= k <= points.length <= 104
-104 < xi, yi < 104
解法
方法一:自定义排序
我们将所有点按照与原点的距离从小到大排序,然后取前 $k$ 个点即可。
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(\log n)$。其中 $n$ 为数组 $\textit{points}$ 的长度。
| class Solution:
def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:
points.sort(key=lambda p: hypot(p[0], p[1]))
return points[:k]
|
| class Solution {
public int[][] kClosest(int[][] points, int k) {
Arrays.sort(
points, (p1, p2) -> Math.hypot(p1[0], p1[1]) - Math.hypot(p2[0], p2[1]) > 0 ? 1 : -1);
return Arrays.copyOfRange(points, 0, k);
}
}
|
| class Solution {
public:
vector<vector<int>> kClosest(vector<vector<int>>& points, int k) {
sort(points.begin(), points.end(), [](const vector<int>& p1, const vector<int>& p2) {
return hypot(p1[0], p1[1]) < hypot(p2[0], p2[1]);
});
return vector<vector<int>>(points.begin(), points.begin() + k);
}
};
|
| func kClosest(points [][]int, k int) [][]int {
sort.Slice(points, func(i, j int) bool {
return math.Hypot(float64(points[i][0]), float64(points[i][1])) < math.Hypot(float64(points[j][0]), float64(points[j][1]))
})
return points[:k]
}
|
| function kClosest(points: number[][], k: number): number[][] {
points.sort((a, b) => Math.hypot(a[0], a[1]) - Math.hypot(b[0], b[1]));
return points.slice(0, k);
}
|
| impl Solution {
pub fn k_closest(mut points: Vec<Vec<i32>>, k: i32) -> Vec<Vec<i32>> {
points.sort_by(|a, b| {
let dist_a = f64::hypot(a[0] as f64, a[1] as f64);
let dist_b = f64::hypot(b[0] as f64, b[1] as f64);
dist_a.partial_cmp(&dist_b).unwrap()
});
points.into_iter().take(k as usize).collect()
}
}
|
方法二:优先队列(大根堆)
我们可以使用一个优先队列(大根堆)来维护距离原点最近的 $k$ 个点。
时间复杂度 $O(n \times \log k)$,空间复杂度 $O(k)$。其中 $n$ 为数组 $\textit{points}$ 的长度。
| class Solution:
def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:
max_q = []
for i, (x, y) in enumerate(points):
dist = math.hypot(x, y)
heappush(max_q, (-dist, i))
if len(max_q) > k:
heappop(max_q)
return [points[i] for _, i in max_q]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
public int[][] kClosest(int[][] points, int k) {
PriorityQueue<int[]> maxQ = new PriorityQueue<>((a, b) -> b[0] - a[0]);
for (int i = 0; i < points.length; ++i) {
int x = points[i][0], y = points[i][1];
maxQ.offer(new int[] {x * x + y * y, i});
if (maxQ.size() > k) {
maxQ.poll();
}
}
int[][] ans = new int[k][2];
for (int i = 0; i < k; ++i) {
ans[i] = points[maxQ.poll()[1]];
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public:
vector<vector<int>> kClosest(vector<vector<int>>& points, int k) {
priority_queue<pair<double, int>> pq;
for (int i = 0, n = points.size(); i < n; ++i) {
double dist = hypot(points[i][0], points[i][1]);
pq.push({dist, i});
if (pq.size() > k) {
pq.pop();
}
}
vector<vector<int>> ans;
while (!pq.empty()) {
ans.push_back(points[pq.top().second]);
pq.pop();
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | func kClosest(points [][]int, k int) [][]int {
maxQ := hp{}
for i, p := range points {
dist := math.Hypot(float64(p[0]), float64(p[1]))
heap.Push(&maxQ, pair{dist, i})
if len(maxQ) > k {
heap.Pop(&maxQ)
}
}
ans := make([][]int, k)
for i, p := range maxQ {
ans[i] = points[p.i]
}
return ans
}
type pair struct {
dist float64
i int
}
type hp []pair
func (h hp) Len() int { return len(h) }
func (h hp) Less(i, j int) bool {
a, b := h[i], h[j]
return a.dist > b.dist
}
func (h hp) Swap(i, j int) { h[i], h[j] = h[j], h[i] }
func (h *hp) Push(v any) { *h = append(*h, v.(pair)) }
func (h *hp) Pop() any { a := *h; v := a[len(a)-1]; *h = a[:len(a)-1]; return v }
|
| function kClosest(points: number[][], k: number): number[][] {
const maxQ = new MaxPriorityQueue();
for (const [x, y] of points) {
const dist = x * x + y * y;
maxQ.enqueue([x, y], dist);
if (maxQ.size() > k) {
maxQ.dequeue();
}
}
return maxQ.toArray().map(item => item.element);
}
|
方法三:二分查找
我们注意到,随着距离的增大,点的数量是递增的。这存在一个临界值,使得在这个值之前的点的数量小于等于 $k$,而在这个值之后的点的数量大于 $k$。
因此,我们可以使用二分查找,枚举距离。每一次二分查找,我们统计出距离小于等于当前距离的点的数量,如果数量大于等于 $k$,则说明临界值在左侧,我们令右边界等于当前距离;否则,临界值在右侧,我们令左边界等于当前距禽加一。
二分查找结束后,我们只需要返回距离小于等于左边界的点即可。
时间复杂度 $O(n \times \log M)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $\textit{points}$ 的长度,而 $M$ 为距离的最大值。
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution:
def kClosest(self, points: List[List[int]], k: int) -> List[List[int]]:
dist = [x * x + y * y for x, y in points]
l, r = 0, max(dist)
while l < r:
mid = (l + r) >> 1
cnt = sum(d <= mid for d in dist)
if cnt >= k:
r = mid
else:
l = mid + 1
return [points[i] for i, d in enumerate(dist) if d <= l]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | class Solution {
public int[][] kClosest(int[][] points, int k) {
int n = points.length;
int[] dist = new int[n];
int r = 0;
for (int i = 0; i < n; ++i) {
int x = points[i][0], y = points[i][1];
dist[i] = x * x + y * y;
r = Math.max(r, dist[i]);
}
int l = 0;
while (l < r) {
int mid = (l + r) >> 1;
int cnt = 0;
for (int d : dist) {
if (d <= mid) {
++cnt;
}
}
if (cnt >= k) {
r = mid;
} else {
l = mid + 1;
}
}
int[][] ans = new int[k][0];
for (int i = 0, j = 0; i < n; ++i) {
if (dist[i] <= l) {
ans[j++] = points[i];
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | class Solution {
public:
vector<vector<int>> kClosest(vector<vector<int>>& points, int k) {
int n = points.size();
int dist[n];
int r = 0;
for (int i = 0; i < n; ++i) {
int x = points[i][0], y = points[i][1];
dist[i] = x * x + y * y;
r = max(r, dist[i]);
}
int l = 0;
while (l < r) {
int mid = (l + r) >> 1;
int cnt = 0;
for (int d : dist) {
cnt += d <= mid;
}
if (cnt >= k) {
r = mid;
} else {
l = mid + 1;
}
}
vector<vector<int>> ans;
for (int i = 0; i < n; ++i) {
if (dist[i] <= l) {
ans.emplace_back(points[i]);
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | func kClosest(points [][]int, k int) (ans [][]int) {
n := len(points)
dist := make([]int, n)
l, r := 0, 0
for i, p := range points {
dist[i] = p[0]*p[0] + p[1]*p[1]
r = max(r, dist[i])
}
for l < r {
mid := (l + r) >> 1
cnt := 0
for _, d := range dist {
if d <= mid {
cnt++
}
}
if cnt >= k {
r = mid
} else {
l = mid + 1
}
}
for i, p := range points {
if dist[i] <= l {
ans = append(ans, p)
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | function kClosest(points: number[][], k: number): number[][] {
const dist = points.map(([x, y]) => x * x + y * y);
let [l, r] = [0, Math.max(...dist)];
while (l < r) {
const mid = (l + r) >> 1;
let cnt = 0;
for (const d of dist) {
if (d <= mid) {
++cnt;
}
}
if (cnt >= k) {
r = mid;
} else {
l = mid + 1;
}
}
return points.filter((_, i) => dist[i] <= l);
}
|