树
深度优先搜索
二叉树
题目描述
给你一棵二叉树的根节点,返回该树的 直径 。
二叉树的 直径 是指树中任意两个节点之间最长路径的 长度 。这条路径可能经过也可能不经过根节点 root
。
两节点之间路径的 长度 由它们之间边数表示。
示例 1:
输入: root = [1,2,3,4,5]
输出: 3
解释: 3 ,取路径 [4,2,1,3] 或 [5,2,1,3] 的长度。
示例 2:
输入: root = [1,2]
输出: 1
提示:
树中节点数目在范围 [1, 104 ]
内
-100 <= Node.val <= 100
解法
方法一:枚举 + DFS
我们可以枚举二叉树的每个节点,以该节点为根节点,计算其左右子树的最大深度 $\textit{l}$ 和 $\textit{r}$,则该节点的直径为 $\textit{l} + \textit{r}$。取所有节点的直径的最大值即为二叉树的直径。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript C# C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def diameterOfBinaryTree ( self , root : TreeNode ) -> int :
def dfs ( root ):
if root is None :
return 0
nonlocal ans
left , right = dfs ( root . left ), dfs ( root . right )
ans = max ( ans , left + right )
return 1 + max ( left , right )
ans = 0
dfs ( root )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int ans ;
public int diameterOfBinaryTree ( TreeNode root ) {
dfs ( root );
return ans ;
}
private int dfs ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int l = dfs ( root . left );
int r = dfs ( root . right );
ans = Math . max ( ans , l + r );
return 1 + Math . max ( l , r );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
int diameterOfBinaryTree ( TreeNode * root ) {
int ans = 0 ;
auto dfs = [ & ]( this auto && dfs , TreeNode * root ) -> int {
if ( ! root ) {
return 0 ;
}
int l = dfs ( root -> left );
int r = dfs ( root -> right );
ans = max ( ans , l + r );
return 1 + max ( l , r );
};
dfs ( root );
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func diameterOfBinaryTree ( root * TreeNode ) ( ans int ) {
var dfs func ( root * TreeNode ) int
dfs = func ( root * TreeNode ) int {
if root == nil {
return 0
}
l , r := dfs ( root . Left ), dfs ( root . Right )
ans = max ( ans , l + r )
return 1 + max ( l , r )
}
dfs ( root )
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function diameterOfBinaryTree ( root : TreeNode | null ) : number {
let ans = 0 ;
const dfs = ( root : TreeNode | null ) : number => {
if ( ! root ) {
return 0 ;
}
const [ l , r ] = [ dfs ( root . left ), dfs ( root . right )];
ans = Math . max ( ans , l + r );
return 1 + Math . max ( l , r );
};
dfs ( root );
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
pub fn diameter_of_binary_tree ( root : Option < Rc < RefCell < TreeNode >>> ) -> i32 {
let mut ans = 0 ;
fn dfs ( root : Option < Rc < RefCell < TreeNode >>> , ans : & mut i32 ) -> i32 {
match root {
Some ( node ) => {
let node = node . borrow ();
let l = dfs ( node . left . clone (), ans );
let r = dfs ( node . right . clone (), ans );
* ans = ( * ans ). max ( l + r );
1 + l . max ( r )
}
None => 0 ,
}
}
dfs ( root , & mut ans );
ans
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number}
*/
var diameterOfBinaryTree = function ( root ) {
let ans = 0 ;
const dfs = root => {
if ( ! root ) {
return 0 ;
}
const [ l , r ] = [ dfs ( root . left ), dfs ( root . right )];
ans = Math . max ( ans , l + r );
return 1 + Math . max ( l , r );
};
dfs ( root );
return ans ;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 /**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private int ans ;
public int DiameterOfBinaryTree ( TreeNode root ) {
dfs ( root );
return ans ;
}
private int dfs ( TreeNode root ) {
if ( root == null ) {
return 0 ;
}
int l = dfs ( root . left );
int r = dfs ( root . right );
ans = Math . Max ( ans , l + r );
return 1 + Math . Max ( l , r );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
int dfs ( struct TreeNode * root , int * ans ) {
if ( root == NULL ) {
return 0 ;
}
int l = dfs ( root -> left , ans );
int r = dfs ( root -> right , ans );
if ( l + r > * ans ) {
* ans = l + r ;
}
return 1 + ( l > r ? l : r );
}
int diameterOfBinaryTree ( struct TreeNode * root ) {
int ans = 0 ;
dfs ( root , & ans );
return ans ;
}
GitHub