树
深度优先搜索
广度优先搜索
二叉树
题目描述
给定一棵二叉树的根节点 root
,请找出该二叉树中每一层的最大值。
示例1:
输入: root = [1,3,2,5,3,null,9]
输出: [1,3,9]
示例2:
输入: root = [1,2,3]
输出: [1,3]
提示:
二叉树的节点个数的范围是 [0,104 ]
-231 <= Node.val <= 231 - 1
解法
方法一:BFS
我们定义一个队列 $q$,将根节点放入队列中。每次从队列中取出当前层的所有节点,找出最大值,然后将下一层的所有节点放入队列中,直到队列为空。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def largestValues ( self , root : Optional [ TreeNode ]) -> List [ int ]:
ans = []
if root is None :
return ans
q = deque ([ root ])
while q :
x = - inf
for _ in range ( len ( q )):
node = q . popleft ()
x = max ( x , node . val )
if node . left :
q . append ( node . left )
if node . right :
q . append ( node . right )
ans . append ( x )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List < Integer > largestValues ( TreeNode root ) {
List < Integer > ans = new ArrayList <> ();
if ( root == null ) {
return ans ;
}
Deque < TreeNode > q = new ArrayDeque <> ();
q . offer ( root );
while ( ! q . isEmpty ()) {
int t = q . peek (). val ;
for ( int i = q . size (); i > 0 ; -- i ) {
TreeNode node = q . poll ();
t = Math . max ( t , node . val );
if ( node . left != null ) {
q . offer ( node . left );
}
if ( node . right != null ) {
q . offer ( node . right );
}
}
ans . add ( t );
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < int > largestValues ( TreeNode * root ) {
vector < int > ans ;
if ( ! root ) {
return ans ;
}
queue < TreeNode *> q {{ root }};
while ( q . size ()) {
int x = INT_MIN ;
for ( int i = q . size (); i ; -- i ) {
TreeNode * node = q . front ();
q . pop ();
x = max ( x , node -> val );
if ( node -> left ) {
q . push ( node -> left );
}
if ( node -> right ) {
q . push ( node -> right );
}
}
ans . push_back ( x );
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func largestValues ( root * TreeNode ) ( ans [] int ) {
if root == nil {
return
}
q := [] * TreeNode { root }
for len ( q ) > 0 {
x := q [ 0 ]. Val
for i := len ( q ); i > 0 ; i -- {
node := q [ 0 ]
q = q [ 1 :]
x = max ( x , node . Val )
if node . Left != nil {
q = append ( q , node . Left )
}
if node . Right != nil {
q = append ( q , node . Right )
}
}
ans = append ( ans , x )
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function largestValues ( root : TreeNode | null ) : number [] {
const ans : number [] = [];
if ( ! root ) {
return ans ;
}
const q : TreeNode [] = [ root ];
while ( q . length ) {
const nq : TreeNode [] = [];
let x = - Infinity ;
for ( const { val , left , right } of q ) {
x = Math . max ( x , val );
if ( left ) {
nq . push ( left );
}
if ( right ) {
nq . push ( right );
}
}
ans . push ( x );
q . length = 0 ;
q . push (... nq );
}
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: collections :: VecDeque ;
use std :: rc :: Rc ;
impl Solution {
pub fn largest_values ( root : Option < Rc < RefCell < TreeNode >>> ) -> Vec < i32 > {
let mut ans = Vec :: new ();
let mut q = VecDeque :: new ();
if root . is_some () {
q . push_back ( root . clone ());
}
while ! q . is_empty () {
let mut x = i32 :: MIN ;
for _ in 0 .. q . len () {
let node = q . pop_front (). unwrap ();
let node = node . as_ref (). unwrap (). borrow ();
x = x . max ( node . val );
if node . left . is_some () {
q . push_back ( node . left . clone ());
}
if node . right . is_some () {
q . push_back ( node . right . clone ());
}
}
ans . push ( x );
}
ans
}
}
方法二:DFS
DFS 先序遍历,找每个深度最大的节点值。
Python3 Java C++ Go TypeScript Rust
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def largestValues ( self , root : Optional [ TreeNode ]) -> List [ int ]:
def dfs ( root , curr ):
if root is None :
return
if curr == len ( ans ):
ans . append ( root . val )
else :
ans [ curr ] = max ( ans [ curr ], root . val )
dfs ( root . left , curr + 1 )
dfs ( root . right , curr + 1 )
ans = []
dfs ( root , 0 )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List < Integer > ans = new ArrayList <> ();
public List < Integer > largestValues ( TreeNode root ) {
dfs ( root , 0 );
return ans ;
}
private void dfs ( TreeNode root , int curr ) {
if ( root == null ) {
return ;
}
if ( curr == ans . size ()) {
ans . add ( root . val );
} else {
ans . set ( curr , Math . max ( ans . get ( curr ), root . val ));
}
dfs ( root . left , curr + 1 );
dfs ( root . right , curr + 1 );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < int > ans ;
vector < int > largestValues ( TreeNode * root ) {
dfs ( root , 0 );
return ans ;
}
void dfs ( TreeNode * root , int curr ) {
if ( ! root ) return ;
if ( curr == ans . size ())
ans . push_back ( root -> val );
else
ans [ curr ] = max ( ans [ curr ], root -> val );
dfs ( root -> left , curr + 1 );
dfs ( root -> right , curr + 1 );
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func largestValues ( root * TreeNode ) [] int {
var ans [] int
var dfs func ( * TreeNode , int )
dfs = func ( root * TreeNode , curr int ) {
if root == nil {
return
}
if curr == len ( ans ) {
ans = append ( ans , root . Val )
} else {
ans [ curr ] = max ( ans [ curr ], root . Val )
}
dfs ( root . Left , curr + 1 )
dfs ( root . Right , curr + 1 )
}
dfs ( root , 0 )
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function largestValues ( root : TreeNode | null ) : number [] {
const res = [];
const dfs = ( root : TreeNode | null , depth : number ) => {
if ( root == null ) {
return ;
}
const { val , left , right } = root ;
if ( res . length == depth ) {
res . push ( val );
} else {
res [ depth ] = Math . max ( res [ depth ], val );
}
dfs ( left , depth + 1 );
dfs ( right , depth + 1 );
};
dfs ( root , 0 );
return res ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
fn dfs ( root : & Option < Rc < RefCell < TreeNode >>> , depth : usize , res : & mut Vec < i32 > ) {
if root . is_none () {
return ;
}
let node = root . as_ref (). unwrap (). borrow ();
if res . len () == depth {
res . push ( node . val );
} else {
res [ depth ] = res [ depth ]. max ( node . val );
}
Self :: dfs ( & node . left , depth + 1 , res );
Self :: dfs ( & node . right , depth + 1 , res );
}
pub fn largest_values ( root : Option < Rc < RefCell < TreeNode >>> ) -> Vec < i32 > {
let mut res = Vec :: new ();
Self :: dfs ( & root , 0 , & mut res );
res
}
}
GitHub