题目描述
给你一个非负整数数组 nums
和一个整数 target
。
向数组中的每个整数前添加 '+'
或 '-'
,然后串联起所有整数,可以构造一个 表达式 :
- 例如,
nums = [2, 1]
,可以在 2
之前添加 '+'
,在 1
之前添加 '-'
,然后串联起来得到表达式 "+2-1"
。
返回可以通过上述方法构造的、运算结果等于 target
的不同 表达式 的数目。
示例 1:
输入:nums = [1,1,1,1,1], target = 3
输出:5
解释:一共有 5 种方法让最终目标和为 3 。
-1 + 1 + 1 + 1 + 1 = 3
+1 - 1 + 1 + 1 + 1 = 3
+1 + 1 - 1 + 1 + 1 = 3
+1 + 1 + 1 - 1 + 1 = 3
+1 + 1 + 1 + 1 - 1 = 3
示例 2:
输入:nums = [1], target = 1
输出:1
提示:
1 <= nums.length <= 20
0 <= nums[i] <= 1000
0 <= sum(nums[i]) <= 1000
-1000 <= target <= 1000
解法
方法一:动态规划
我们记数组 $\textit{nums}$ 所有元素的和为 $s$,添加负号的元素之和为 $x$,则添加正号的元素之和为 $s - x$,则有:
$$
(s - x) - x = \textit{target} \Rightarrow x = \frac{s - \textit{target}}{2}
$$
由于 $x \geq 0$,且 $x$ 为整数,所以 $s \geq \textit{target}$ 且 $s - \textit{target}$ 为偶数。如果不满足这两个条件,则直接返回 $0$。
接下来,我们可以将问题转化为:在数组 $\textit{nums}$ 中选取若干元素,使得这些元素之和等于 $\frac{s - \textit{target}}{2}$,问有多少种选取方法。
我们可以使用动态规划来解决这个问题。定义 $f[i][j]$ 表示在数组 $\textit{nums}$ 的前 $i$ 个元素中选取若干元素,使得这些元素之和等于 $j$ 的选取方案数。
对于 $\textit{nums}[i - 1]$,我们有两种选择:选取或不选取。如果我们不选取 $\textit{nums}[i - 1]$,则 $f[i][j] = f[i - 1][j]$;如果我们选取 $\textit{nums}[i - 1]$,则 $f[i][j] = f[i - 1][j - \textit{nums}[i - 1]]$。因此,状态转移方程为:
$$
f[i][j] = f[i - 1][j] + f[i - 1][j - \textit{nums}[i - 1]]
$$
其中,选取的前提是 $j \geq \textit{nums}[i - 1]$。
最终答案即为 $f[m][n]$。其中 $m$ 为数组 $\textit{nums}$ 的长度,而 $n = \frac{s - \textit{target}}{2}$。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
s = sum(nums)
if s < target or (s - target) % 2:
return 0
m, n = len(nums), (s - target) // 2
f = [[0] * (n + 1) for _ in range(m + 1)]
f[0][0] = 1
for i, x in enumerate(nums, 1):
for j in range(n + 1):
f[i][j] = f[i - 1][j]
if j >= x:
f[i][j] += f[i - 1][j - x]
return f[m][n]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution {
public int findTargetSumWays(int[] nums, int target) {
int s = Arrays.stream(nums).sum();
if (s < target || (s - target) % 2 != 0) {
return 0;
}
int m = nums.length;
int n = (s - target) / 2;
int[][] f = new int[m + 1][n + 1];
f[0][0] = 1;
for (int i = 1; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
f[i][j] = f[i - 1][j];
if (j >= nums[i - 1]) {
f[i][j] += f[i - 1][j - nums[i - 1]];
}
}
}
return f[m][n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s < target || (s - target) % 2) {
return 0;
}
int m = nums.size();
int n = (s - target) / 2;
int f[m + 1][n + 1];
memset(f, 0, sizeof(f));
f[0][0] = 1;
for (int i = 1; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
f[i][j] = f[i - 1][j];
if (j >= nums[i - 1]) {
f[i][j] += f[i - 1][j - nums[i - 1]];
}
}
}
return f[m][n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | func findTargetSumWays(nums []int, target int) int {
s := 0
for _, x := range nums {
s += x
}
if s < target || (s-target)%2 != 0 {
return 0
}
m, n := len(nums), (s-target)/2
f := make([][]int, m+1)
for i := range f {
f[i] = make([]int, n+1)
}
f[0][0] = 1
for i := 1; i <= m; i++ {
for j := 0; j <= n; j++ {
f[i][j] = f[i-1][j]
if j >= nums[i-1] {
f[i][j] += f[i-1][j-nums[i-1]]
}
}
}
return f[m][n]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | function findTargetSumWays(nums: number[], target: number): number {
const s = nums.reduce((a, b) => a + b, 0);
if (s < target || (s - target) % 2) {
return 0;
}
const [m, n] = [nums.length, ((s - target) / 2) | 0];
const f: number[][] = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
f[0][0] = 1;
for (let i = 1; i <= m; i++) {
for (let j = 0; j <= n; j++) {
f[i][j] = f[i - 1][j];
if (j >= nums[i - 1]) {
f[i][j] += f[i - 1][j - nums[i - 1]];
}
}
}
return f[m][n];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | impl Solution {
pub fn find_target_sum_ways(nums: Vec<i32>, target: i32) -> i32 {
let s: i32 = nums.iter().sum();
if s < target || (s - target) % 2 != 0 {
return 0;
}
let m = nums.len();
let n = ((s - target) / 2) as usize;
let mut f = vec![vec![0; n + 1]; m + 1];
f[0][0] = 1;
for i in 1..=m {
for j in 0..=n {
f[i][j] = f[i - 1][j];
if j as i32 >= nums[i - 1] {
f[i][j] += f[i - 1][j - nums[i - 1] as usize];
}
}
}
f[m][n]
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | /**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var findTargetSumWays = function (nums, target) {
const s = nums.reduce((a, b) => a + b, 0);
if (s < target || (s - target) % 2) {
return 0;
}
const [m, n] = [nums.length, ((s - target) / 2) | 0];
const f = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
f[0][0] = 1;
for (let i = 1; i <= m; i++) {
for (let j = 0; j <= n; j++) {
f[i][j] = f[i - 1][j];
if (j >= nums[i - 1]) {
f[i][j] += f[i - 1][j - nums[i - 1]];
}
}
}
return f[m][n];
};
|
方法二:动态规划(空间优化)
我们可以发现,方法一中的状态转移方程中,$f[i][j]$ 的值只和 $f[i - 1][j]$ 以及 $f[i - 1][j - \textit{nums}[i - 1]]$ 有关,因此我们去掉第一维空间,只使用一维数组即可。
时间复杂度 $O(m \times n)$,空间复杂度 $O(n)$。
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution:
def findTargetSumWays(self, nums: List[int], target: int) -> int:
s = sum(nums)
if s < target or (s - target) % 2:
return 0
n = (s - target) // 2
f = [0] * (n + 1)
f[0] = 1
for x in nums:
for j in range(n, x - 1, -1):
f[j] += f[j - x]
return f[n]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
public int findTargetSumWays(int[] nums, int target) {
int s = Arrays.stream(nums).sum();
if (s < target || (s - target) % 2 != 0) {
return 0;
}
int n = (s - target) / 2;
int[] f = new int[n + 1];
f[0] = 1;
for (int num : nums) {
for (int j = n; j >= num; --j) {
f[j] += f[j - num];
}
}
return f[n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public:
int findTargetSumWays(vector<int>& nums, int target) {
int s = accumulate(nums.begin(), nums.end(), 0);
if (s < target || (s - target) % 2) {
return 0;
}
int n = (s - target) / 2;
int f[n + 1];
memset(f, 0, sizeof(f));
f[0] = 1;
for (int x : nums) {
for (int j = n; j >= x; --j) {
f[j] += f[j - x];
}
}
return f[n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | func findTargetSumWays(nums []int, target int) int {
s := 0
for _, x := range nums {
s += x
}
if s < target || (s-target)%2 != 0 {
return 0
}
n := (s - target) / 2
f := make([]int, n+1)
f[0] = 1
for _, x := range nums {
for j := n; j >= x; j-- {
f[j] += f[j-x]
}
}
return f[n]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | function findTargetSumWays(nums: number[], target: number): number {
const s = nums.reduce((a, b) => a + b, 0);
if (s < target || (s - target) % 2) {
return 0;
}
const n = ((s - target) / 2) | 0;
const f = Array(n + 1).fill(0);
f[0] = 1;
for (const x of nums) {
for (let j = n; j >= x; j--) {
f[j] += f[j - x];
}
}
return f[n];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | impl Solution {
pub fn find_target_sum_ways(nums: Vec<i32>, target: i32) -> i32 {
let s: i32 = nums.iter().sum();
if s < target || (s - target) % 2 != 0 {
return 0;
}
let n = ((s - target) / 2) as usize;
let mut f = vec![0; n + 1];
f[0] = 1;
for x in nums {
for j in (x as usize..=n).rev() {
f[j] += f[j - x as usize];
}
}
f[n]
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | /**
* @param {number[]} nums
* @param {number} target
* @return {number}
*/
var findTargetSumWays = function (nums, target) {
const s = nums.reduce((a, b) => a + b, 0);
if (s < target || (s - target) % 2) {
return 0;
}
const n = (s - target) / 2;
const f = Array(n + 1).fill(0);
f[0] = 1;
for (const x of nums) {
for (let j = n; j >= x; j--) {
f[j] += f[j - x];
}
}
return f[n];
};
|