题目描述
给你一个未排序的整数数组 nums
,请你找出其中没有出现的最小的正整数。
请你实现时间复杂度为 O(n)
并且只使用常数级别额外空间的解决方案。
示例 1:
输入:nums = [1,2,0]
输出:3
解释:范围 [1,2] 中的数字都在数组中。
示例 2:
输入:nums = [3,4,-1,1]
输出:2
解释:1 在数组中,但 2 没有。
示例 3:
输入:nums = [7,8,9,11,12]
输出:1
解释:最小的正数 1 没有出现。
提示:
1 <= nums.length <= 105
-231 <= nums[i] <= 231 - 1
解法
方法一:原地交换
我们假设数组 $nums$ 长度为 $n$,那么最小的正整数一定在 $[1, .., n + 1]$ 之间。我们可以遍历数组,将数组中的每个数 $x$ 交换到它应该在的位置上,即 $x$ 应该在的位置为 $x - 1$。如果 $x$ 不在 $[1, n + 1]$ 之间,那么我们就不用管它。
遍历结束后,我们再遍历数组,如果 $i+1$ 不等于 $nums[i]$,那么 $i+1$ 就是我们要找的最小的正整数。
时间复杂度 $O(n)$,其中 $n$ 是数组的长度。空间复杂度 $O(1)$。
| class Solution:
def firstMissingPositive(self, nums: List[int]) -> int:
n = len(nums)
for i in range(n):
while 1 <= nums[i] <= n and nums[i] != nums[nums[i] - 1]:
j = nums[i] - 1
nums[i], nums[j] = nums[j], nums[i]
for i in range(n):
if nums[i] != i + 1:
return i + 1
return n + 1
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution {
public int firstMissingPositive(int[] nums) {
int n = nums.length;
for (int i = 0; i < n; ++i) {
while (nums[i] > 0 && nums[i] <= n && nums[i] != nums[nums[i] - 1]) {
swap(nums, i, nums[i] - 1);
}
}
for (int i = 0; i < n; ++i) {
if (nums[i] != i + 1) {
return i + 1;
}
}
return n + 1;
}
private void swap(int[] nums, int i, int j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
public:
int firstMissingPositive(vector<int>& nums) {
int n = nums.size();
for (int i = 0; i < n; ++i) {
while (nums[i] > 0 && nums[i] <= n && nums[i] != nums[nums[i] - 1]) {
swap(nums[i], nums[nums[i] - 1]);
}
}
for (int i = 0; i < n; ++i) {
if (nums[i] != i + 1) {
return i + 1;
}
}
return n + 1;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | func firstMissingPositive(nums []int) int {
n := len(nums)
for i := range nums {
for 0 < nums[i] && nums[i] <= n && nums[i] != nums[nums[i]-1] {
nums[i], nums[nums[i]-1] = nums[nums[i]-1], nums[i]
}
}
for i, x := range nums {
if x != i+1 {
return i + 1
}
}
return n + 1
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | function firstMissingPositive(nums: number[]): number {
const n = nums.length;
for (let i = 0; i < n; i++) {
while (nums[i] >= 1 && nums[i] <= n && nums[i] !== nums[nums[i] - 1]) {
const j = nums[i] - 1;
[nums[i], nums[j]] = [nums[j], nums[i]];
}
}
for (let i = 0; i < n; i++) {
if (nums[i] !== i + 1) {
return i + 1;
}
}
return n + 1;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | impl Solution {
pub fn first_missing_positive(mut nums: Vec<i32>) -> i32 {
let n = nums.len();
for i in 0..n {
while nums[i] > 0 && nums[i] <= n as i32 && nums[i] != nums[nums[i] as usize - 1] {
let j = nums[i] as usize - 1;
nums.swap(i, j);
}
}
for i in 0..n {
if nums[i] != (i + 1) as i32 {
return (i + 1) as i32;
}
}
return (n + 1) as i32;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | public class Solution {
public int FirstMissingPositive(int[] nums) {
int n = nums.Length;
for (int i = 0; i < n; ++i) {
while (nums[i] >= 1 && nums[i] <= n && nums[i] != nums[nums[i] - 1]) {
Swap(nums, i, nums[i] - 1);
}
}
for (int i = 0; i < n; ++i) {
if (i + 1 != nums[i]) {
return i + 1;
}
}
return n + 1;
}
private void Swap(int[] nums, int i, int j) {
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | int firstMissingPositive(int* nums, int numsSize) {
for (int i = 0; i < numsSize; ++i) {
while (nums[i] > 0 && nums[i] <= numsSize && nums[i] != nums[nums[i] - 1]) {
int j = nums[i] - 1;
int t = nums[i];
nums[i] = nums[j];
nums[j] = t;
}
}
for (int i = 0; i < numsSize; ++i) {
if (nums[i] != i + 1) {
return i + 1;
}
}
return numsSize + 1;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | class Solution {
/**
* @param Integer[] $nums
* @return Integer
*/
function firstMissingPositive($nums) {
$n = count($nums);
for ($i = 0; $i < $n; $i++) {
while ($nums[$i] >= 1 && $nums[$i] <= $n && $nums[$i] != $nums[$nums[$i] - 1]) {
$j = $nums[$i] - 1;
$t = $nums[$i];
$nums[$i] = $nums[$j];
$nums[$j] = $t;
}
}
for ($i = 0; $i < $n; $i++) {
if ($nums[$i] != $i + 1) {
return $i + 1;
}
}
return $n + 1;
}
}
|