题目描述
给你一个下标从 0 开始大小为 m x n
的二维整数数组 grid
,其中下标在 (r, c)
处的整数表示:
- 如果
grid[r][c] = 0
,那么它是一块 陆地 。
- 如果
grid[r][c] > 0
,那么它是一块 水域 ,且包含 grid[r][c]
条鱼。
一位渔夫可以从任意 水域 格子 (r, c)
出发,然后执行以下操作任意次:
- 捕捞格子
(r, c)
处所有的鱼,或者
- 移动到相邻的 水域 格子。
请你返回渔夫最优策略下, 最多 可以捕捞多少条鱼。如果没有水域格子,请你返回 0
。
格子 (r, c)
相邻 的格子为 (r, c + 1)
,(r, c - 1)
,(r + 1, c)
和 (r - 1, c)
,前提是相邻格子在网格图内。
示例 1:
输入:grid = [[0,2,1,0],[4,0,0,3],[1,0,0,4],[0,3,2,0]]
输出:7
解释:渔夫可以从格子 (1,3) 出发,捕捞 3 条鱼,然后移动到格子 (2,3) ,捕捞 4 条鱼。
示例 2:
输入:grid = [[1,0,0,0],[0,0,0,0],[0,0,0,0],[0,0,0,1]]
输出:1
解释:渔夫可以从格子 (0,0) 或者 (3,3) ,捕捞 1 条鱼。
提示:
m == grid.length
n == grid[i].length
1 <= m, n <= 10
0 <= grid[i][j] <= 10
解法
方法一:DFS
根据题目描述,我们只需要找出每块连通的水域中鱼的数目,然后取最大值即可。因此,我们可以使用深度优先搜索的方法来解决本题。
我们定义一个函数 $dfs(i, j)$,表示从网格图中的第 $i$ 行第 $j$ 列的格子出发,可以捕捞到的最大鱼数。函数 $dfs(i, j)$ 的执行逻辑如下:
我们用一个变量 $cnt$ 来记录当前格子中的鱼的数目,然后将当前格子中的鱼的数目置为 $0$,表示已经捕捞过了。然后我们遍历当前格子的上下左右四个方向,如果某个方向的格子 $(x, y)$ 在网格图内且是水域格子,那么我们就递归调用 $dfs(x, y)$ 函数,将返回值加到 $cnt$ 中。最后返回 $cnt$ 即可。
在主函数中,我们遍历所有的格子 $(i, j)$,如果当前格子是水域格子,那么我们就调用 $dfs(i, j)$ 函数,取返回值的最大值作为答案返回即可。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别是网格图的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution:
def findMaxFish(self, grid: List[List[int]]) -> int:
def dfs(i: int, j: int) -> int:
cnt = grid[i][j]
grid[i][j] = 0
for a, b in pairwise((-1, 0, 1, 0, -1)):
x, y = i + a, j + b
if 0 <= x < m and 0 <= y < n and grid[x][y]:
cnt += dfs(x, y)
return cnt
m, n = len(grid), len(grid[0])
ans = 0
for i in range(m):
for j in range(n):
if grid[i][j]:
ans = max(ans, dfs(i, j))
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 | class Solution {
private int[][] grid;
private int m;
private int n;
public int findMaxFish(int[][] grid) {
m = grid.length;
n = grid[0].length;
this.grid = grid;
int ans = 0;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j] > 0) {
ans = Math.max(ans, dfs(i, j));
}
}
}
return ans;
}
private int dfs(int i, int j) {
int cnt = grid[i][j];
grid[i][j] = 0;
int[] dirs = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] > 0) {
cnt += dfs(x, y);
}
}
return cnt;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | class Solution {
public:
int findMaxFish(vector<vector<int>>& grid) {
int m = grid.size(), n = grid[0].size();
int ans = 0;
function<int(int, int)> dfs = [&](int i, int j) -> int {
int cnt = grid[i][j];
grid[i][j] = 0;
int dirs[5] = {-1, 0, 1, 0, -1};
for (int k = 0; k < 4; ++k) {
int x = i + dirs[k], y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y]) {
cnt += dfs(x, y);
}
}
return cnt;
};
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if (grid[i][j]) {
ans = max(ans, dfs(i, j));
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | func findMaxFish(grid [][]int) (ans int) {
m, n := len(grid), len(grid[0])
dirs := [5]int{-1, 0, 1, 0, -1}
var dfs func(i, j int) int
dfs = func(i, j int) int {
cnt := grid[i][j]
grid[i][j] = 0
for k := 0; k < 4; k++ {
x, y := i+dirs[k], j+dirs[k+1]
if x >= 0 && x < m && y >= 0 && y < n && grid[x][y] > 0 {
cnt += dfs(x, y)
}
}
return cnt
}
for i := range grid {
for j := range grid[i] {
if grid[i][j] > 0 {
ans = max(ans, dfs(i, j))
}
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | function findMaxFish(grid: number[][]): number {
const m = grid.length;
const n = grid[0].length;
const dirs = [-1, 0, 1, 0, -1];
const dfs = (i: number, j: number): number => {
let cnt = grid[i][j];
grid[i][j] = 0;
for (let k = 0; k < 4; ++k) {
const x = i + dirs[k];
const y = j + dirs[k + 1];
if (x >= 0 && x < m && y >= 0 && y < n && grid[x][y] > 0) {
cnt += dfs(x, y);
}
}
return cnt;
};
let ans = 0;
for (let i = 0; i < m; ++i) {
for (let j = 0; j < n; ++j) {
if (grid[i][j] > 0) {
ans = Math.max(ans, dfs(i, j));
}
}
}
return ans;
}
|