题目描述
给定一个整数 n
,计算所有小于等于 n
的非负整数中数字 1
出现的个数。
示例 1:
输入:n = 13
输出:6
示例 2:
输入:n = 0
输出:0
提示:
解法
方法一:数位 DP
这道题实际上是求在给定区间 $[l,..r]$ 中,数字中出现 $1$ 个数。个数与数的位数以及每一位上的数字有关。我们可以用数位 DP 的思路来解决这道题。数位 DP 中,数的大小对复杂度的影响很小。
对于区间 $[l,..r]$ 问题,我们一般会将其转化为 $[1,..r]$ 然后再减去 $[1,..l - 1]$ 的问题,即:
$$
ans = \sum_{i=1}^{r} ans_i - \sum_{i=1}^{l-1} ans_i
$$
不过对于本题而言,我们只需要求出区间 $[1,..r]$ 的值即可。
这里我们用记忆化搜索来实现数位 DP。从起点向下搜索,到最底层得到方案数,一层层向上返回答案并累加,最后从搜索起点得到最终的答案。
基本步骤如下:
我们首先将数字 $n$ 转化为字符串 $s$。然后我们设计一个函数 $\textit{dfs}(i, \textit{cnt}, \textit{limit})$,其中:
- 数字 $i$ 表示当前搜索到的位置,我们从高位开始搜索,即 $i = 0$ 表示最高位。
- 数字 $\textit{cnt}$ 表示当前数字中 $1$ 出现的次数。
- 布尔值 $\textit{limit}$ 表示当前是否受到上界的限制。
函数的执行过程如下:
如果 $i$ 超过了数字 $n$ 的长度,说明搜索结束,直接返回 $cnt$。如果 $\textit{limit}$ 为真,那么 $up$ 为当前数字的第 $i$ 位,否则 $up = 9$。接下来,我们遍历 $j$ 从 $0$ 到 $up$,对于每一个 $j$:
- 如果 $j$ 等于 $1$,我们将 $cnt$ 加一。
- 递归调用 $\textit{dfs}(i + 1, \textit{cnt}, \textit{limit} \land j = up)$。
答案为 $\textit{dfs}(0, 0, \text{True})$。
时间复杂度 $O(m^2 \times D)$,空间复杂度 $O(m^2)$。其中 $m$ 为数字 $n$ 的长度,而 $D = 10$。
相似题目:
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution:
def countDigitOne(self, n: int) -> int:
@cache
def dfs(i: int, cnt: int, limit: bool) -> int:
if i >= len(s):
return cnt
up = int(s[i]) if limit else 9
ans = 0
for j in range(up + 1):
ans += dfs(i + 1, cnt + (j == 1), limit and j == up)
return ans
s = str(n)
return dfs(0, 0, True)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
private int m;
private char[] s;
private Integer[][] f;
public int countDigitOne(int n) {
s = String.valueOf(n).toCharArray();
m = s.length;
f = new Integer[m][m];
return dfs(0, 0, true);
}
private int dfs(int i, int cnt, boolean limit) {
if (i >= m) {
return cnt;
}
if (!limit && f[i][cnt] != null) {
return f[i][cnt];
}
int up = limit ? s[i] - '0' : 9;
int ans = 0;
for (int j = 0; j <= up; ++j) {
ans += dfs(i + 1, cnt + (j == 1 ? 1 : 0), limit && j == up);
}
if (!limit) {
f[i][cnt] = ans;
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | class Solution {
public:
int countDigitOne(int n) {
string s = to_string(n);
int m = s.size();
int f[m][m];
memset(f, -1, sizeof(f));
auto dfs = [&](this auto&& dfs, int i, int cnt, bool limit) -> int {
if (i >= m) {
return cnt;
}
if (!limit && f[i][cnt] != -1) {
return f[i][cnt];
}
int up = limit ? s[i] - '0' : 9;
int ans = 0;
for (int j = 0; j <= up; ++j) {
ans += dfs(i + 1, cnt + (j == 1), limit && j == up);
}
if (!limit) {
f[i][cnt] = ans;
}
return ans;
};
return dfs(0, 0, true);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 | func countDigitOne(n int) int {
s := strconv.Itoa(n)
m := len(s)
f := make([][]int, m)
for i := range f {
f[i] = make([]int, m)
for j := range f[i] {
f[i][j] = -1
}
}
var dfs func(i, cnt int, limit bool) int
dfs = func(i, cnt int, limit bool) int {
if i >= m {
return cnt
}
if !limit && f[i][cnt] != -1 {
return f[i][cnt]
}
up := 9
if limit {
up = int(s[i] - '0')
}
ans := 0
for j := 0; j <= up; j++ {
t := 0
if j == 1 {
t = 1
}
ans += dfs(i+1, cnt+t, limit && j == up)
}
if !limit {
f[i][cnt] = ans
}
return ans
}
return dfs(0, 0, true)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | function countDigitOne(n: number): number {
const s = n.toString();
const m = s.length;
const f: number[][] = Array.from({ length: m }, () => Array(m).fill(-1));
const dfs = (i: number, cnt: number, limit: boolean): number => {
if (i >= m) {
return cnt;
}
if (!limit && f[i][cnt] !== -1) {
return f[i][cnt];
}
const up = limit ? +s[i] : 9;
let ans = 0;
for (let j = 0; j <= up; ++j) {
ans += dfs(i + 1, cnt + (j === 1 ? 1 : 0), limit && j === up);
}
if (!limit) {
f[i][cnt] = ans;
}
return ans;
};
return dfs(0, 0, true);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | public class Solution {
private int m;
private char[] s;
private int?[,] f;
public int CountDigitOne(int n) {
s = n.ToString().ToCharArray();
m = s.Length;
f = new int?[m, m];
return Dfs(0, 0, true);
}
private int Dfs(int i, int cnt, bool limit) {
if (i >= m) {
return cnt;
}
if (!limit && f[i, cnt] != null) {
return f[i, cnt].Value;
}
int up = limit ? s[i] - '0' : 9;
int ans = 0;
for (int j = 0; j <= up; ++j) {
ans += Dfs(i + 1, cnt + (j == 1 ? 1 : 0), limit && j == up);
}
if (!limit) {
f[i, cnt] = ans;
}
return ans;
}
}
|