题目描述
给你一个 有序 数组 nums
,它由 n
个非负整数组成,同时给你一个整数 maximumBit
。你需要执行以下查询 n
次:
- 找到一个非负整数
k < 2maximumBit
,使得 nums[0] XOR nums[1] XOR ... XOR nums[nums.length-1] XOR k
的结果 最大化 。k
是第 i
个查询的答案。
- 从当前数组
nums
删除 最后 一个元素。
请你返回一个数组 answer
,其中 answer[i]
是第 i
个查询的结果。
示例 1:
输入:nums = [0,1,1,3], maximumBit = 2
输出:[0,3,2,3]
解释:查询的答案如下:
第一个查询:nums = [0,1,1,3],k = 0,因为 0 XOR 1 XOR 1 XOR 3 XOR 0 = 3 。
第二个查询:nums = [0,1,1],k = 3,因为 0 XOR 1 XOR 1 XOR 3 = 3 。
第三个查询:nums = [0,1],k = 2,因为 0 XOR 1 XOR 2 = 3 。
第四个查询:nums = [0],k = 3,因为 0 XOR 3 = 3 。
示例 2:
输入:nums = [2,3,4,7], maximumBit = 3
输出:[5,2,6,5]
解释:查询的答案如下:
第一个查询:nums = [2,3,4,7],k = 5,因为 2 XOR 3 XOR 4 XOR 7 XOR 5 = 7。
第二个查询:nums = [2,3,4],k = 2,因为 2 XOR 3 XOR 4 XOR 2 = 7 。
第三个查询:nums = [2,3],k = 6,因为 2 XOR 3 XOR 6 = 7 。
第四个查询:nums = [2],k = 5,因为 2 XOR 5 = 7 。
示例 3:
输入:nums = [0,1,2,2,5,7], maximumBit = 3
输出:[4,3,6,4,6,7]
提示:
nums.length == n
1 <= n <= 105
1 <= maximumBit <= 20
0 <= nums[i] < 2maximumBit
nums
中的数字已经按 升序 排好序。
解法
方法一:位运算 + 枚举
我们先预处理出数组 nums
的异或和 $xs$,即 $xs=nums[0] \oplus nums[1] \oplus \cdots \oplus nums[n-1]$。
接下来,我们从后往前枚举数组 nums
中的每个元素 $x$,当前的异或和为 $xs$,我们需要找到一个数 $k$,使得 $xs \oplus k$ 的值尽可能大,并且 $k \lt 2^{maximumBit}$。
也即是说,我们从 $xs$ 的第 $maximumBit - 1$ 位开始,往低位枚举,如果 $xs$ 的某一位为 $0$,那么我们就将 $k$ 的对应位设置为 $1$,否则我们就将 $k$ 的对应位设置为 $0$。这样,最终得到的 $k$ 就是每一次查询的答案。然后,我们将 $xs$ 更新为 $xs \oplus x$,继续枚举下一个元素。
时间复杂度 $O(n \times m)$,其中 $n$ 和 $m$ 分别是数组 nums
和 maximumBit
的值。忽略答案数组的空间消耗,空间复杂度 $O(1)$。
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution:
def getMaximumXor(self, nums: List[int], maximumBit: int) -> List[int]:
ans = []
xs = reduce(xor, nums)
for x in nums[::-1]:
k = 0
for i in range(maximumBit - 1, -1, -1):
if (xs >> i & 1) == 0:
k |= 1 << i
ans.append(k)
xs ^= x
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution {
public int[] getMaximumXor(int[] nums, int maximumBit) {
int n = nums.length;
int xs = 0;
for (int x : nums) {
xs ^= x;
}
int[] ans = new int[n];
for (int i = 0; i < n; ++i) {
int x = nums[n - i - 1];
int k = 0;
for (int j = maximumBit - 1; j >= 0; --j) {
if (((xs >> j) & 1) == 0) {
k |= 1 << j;
}
}
ans[i] = k;
xs ^= x;
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | class Solution {
public:
vector<int> getMaximumXor(vector<int>& nums, int maximumBit) {
int xs = 0;
for (int& x : nums) {
xs ^= x;
}
int n = nums.size();
vector<int> ans(n);
for (int i = 0; i < n; ++i) {
int x = nums[n - i - 1];
int k = 0;
for (int j = maximumBit - 1; ~j; --j) {
if ((xs >> j & 1) == 0) {
k |= 1 << j;
}
}
ans[i] = k;
xs ^= x;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | func getMaximumXor(nums []int, maximumBit int) (ans []int) {
xs := 0
for _, x := range nums {
xs ^= x
}
for i := range nums {
x := nums[len(nums)-i-1]
k := 0
for j := maximumBit - 1; j >= 0; j-- {
if xs>>j&1 == 0 {
k |= 1 << j
}
}
ans = append(ans, k)
xs ^= x
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | function getMaximumXor(nums: number[], maximumBit: number): number[] {
let xs = 0;
for (const x of nums) {
xs ^= x;
}
const n = nums.length;
const ans = new Array(n);
for (let i = 0; i < n; ++i) {
const x = nums[n - i - 1];
let k = 0;
for (let j = maximumBit - 1; j >= 0; --j) {
if (((xs >> j) & 1) == 0) {
k |= 1 << j;
}
}
ans[i] = k;
xs ^= x;
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | /**
* @param {number[]} nums
* @param {number} maximumBit
* @return {number[]}
*/
var getMaximumXor = function (nums, maximumBit) {
let xs = 0;
for (const x of nums) {
xs ^= x;
}
const n = nums.length;
const ans = new Array(n);
for (let i = 0; i < n; ++i) {
const x = nums[n - i - 1];
let k = 0;
for (let j = maximumBit - 1; j >= 0; --j) {
if (((xs >> j) & 1) == 0) {
k |= 1 << j;
}
}
ans[i] = k;
xs ^= x;
}
return ans;
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | public class Solution {
public int[] GetMaximumXor(int[] nums, int maximumBit) {
int xs = 0;
foreach (int x in nums) {
xs ^= x;
}
int n = nums.Length;
int[] ans = new int[n];
for (int i = 0; i < n; ++i) {
int x = nums[n - i - 1];
int k = 0;
for (int j = maximumBit - 1; j >= 0; --j) {
if ((xs >> j & 1) == 0) {
k |= 1 << j;
}
}
ans[i] = k;
xs ^= x;
}
return ans;
}
}
|
方法二:枚举优化
与方法一类似,我们先预处理出数组 nums
的异或和 $xs$,即 $xs=nums[0] \oplus nums[1] \oplus \cdots \oplus nums[n-1]$。
接下来,我们算出 $2^{maximumBit} - 1$,即 $2^{maximumBit}$ 减去 $1$,记为 $mask$。然后,我们从后往前枚举数组 nums
中的每个元素 $x$,当前的异或和为 $xs$,那么 $k=xs \oplus mask$ 就是每一次查询的答案。然后,我们将 $xs$ 更新为 $xs \oplus x$,继续枚举下一个元素。
时间复杂度 $O(n)$,其中 $n$ 是数组 nums
的长度。忽略答案数组的空间消耗,空间复杂度 $O(1)$。
| class Solution:
def getMaximumXor(self, nums: List[int], maximumBit: int) -> List[int]:
ans = []
xs = reduce(xor, nums)
mask = (1 << maximumBit) - 1
for x in nums[::-1]:
k = xs ^ mask
ans.append(k)
xs ^= x
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution {
public int[] getMaximumXor(int[] nums, int maximumBit) {
int xs = 0;
for (int x : nums) {
xs ^= x;
}
int mask = (1 << maximumBit) - 1;
int n = nums.length;
int[] ans = new int[n];
for (int i = 0; i < n; ++i) {
int x = nums[n - i - 1];
int k = xs ^ mask;
ans[i] = k;
xs ^= x;
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public:
vector<int> getMaximumXor(vector<int>& nums, int maximumBit) {
int xs = 0;
for (int& x : nums) {
xs ^= x;
}
int mask = (1 << maximumBit) - 1;
int n = nums.size();
vector<int> ans(n);
for (int i = 0; i < n; ++i) {
int x = nums[n - i - 1];
int k = xs ^ mask;
ans[i] = k;
xs ^= x;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | func getMaximumXor(nums []int, maximumBit int) (ans []int) {
xs := 0
for _, x := range nums {
xs ^= x
}
mask := (1 << maximumBit) - 1
for i := range nums {
x := nums[len(nums)-i-1]
k := xs ^ mask
ans = append(ans, k)
xs ^= x
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | function getMaximumXor(nums: number[], maximumBit: number): number[] {
let xs = 0;
for (const x of nums) {
xs ^= x;
}
const mask = (1 << maximumBit) - 1;
const n = nums.length;
const ans = new Array(n);
for (let i = 0; i < n; ++i) {
const x = nums[n - i - 1];
let k = xs ^ mask;
ans[i] = k;
xs ^= x;
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | /**
* @param {number[]} nums
* @param {number} maximumBit
* @return {number[]}
*/
var getMaximumXor = function (nums, maximumBit) {
let xs = 0;
for (const x of nums) {
xs ^= x;
}
const mask = (1 << maximumBit) - 1;
const n = nums.length;
const ans = new Array(n);
for (let i = 0; i < n; ++i) {
const x = nums[n - i - 1];
let k = xs ^ mask;
ans[i] = k;
xs ^= x;
}
return ans;
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | public class Solution {
public int[] GetMaximumXor(int[] nums, int maximumBit) {
int xs = 0;
foreach (int x in nums) {
xs ^= x;
}
int mask = (1 << maximumBit) - 1;
int n = nums.Length;
int[] ans = new int[n];
for (int i = 0; i < n; ++i) {
int x = nums[n - i - 1];
int k = xs ^ mask;
ans[i] = k;
xs ^= x;
}
return ans;
}
}
|