跳转至

1786. 从第一个节点出发到最后一个节点的受限路径数

题目描述

现有一个加权无向连通图。给你一个正整数 n ,表示图中有 n 个节点,并按从 1n 给节点编号;另给你一个数组 edges ,其中每个 edges[i] = [ui, vi, weighti] 表示存在一条位于节点 uivi 之间的边,这条边的权重为 weighti

从节点 start 出发到节点 end 的路径是一个形如 [z0, z1, z2, ..., zk] 的节点序列,满足 z0 = startzk = end 且在所有符合 0 <= i <= k-1 的节点 zizi+1 之间存在一条边。

路径的距离定义为这条路径上所有边的权重总和。用 distanceToLastNode(x) 表示节点 nx 之间路径的最短距离。受限路径 为满足 distanceToLastNode(zi) > distanceToLastNode(zi+1) 的一条路径,其中 0 <= i <= k-1

返回从节点 1 出发到节点 n受限路径数 。由于数字可能很大,请返回对 109 + 7 取余 的结果。

 

示例 1:

输入:n = 5, edges = [[1,2,3],[1,3,3],[2,3,1],[1,4,2],[5,2,2],[3,5,1],[5,4,10]]
输出:3
解释:每个圆包含黑色的节点编号和蓝色的 distanceToLastNode 值。三条受限路径分别是:
1) 1 --> 2 --> 5
2) 1 --> 2 --> 3 --> 5
3) 1 --> 3 --> 5

示例 2:

输入:n = 7, edges = [[1,3,1],[4,1,2],[7,3,4],[2,5,3],[5,6,1],[6,7,2],[7,5,3],[2,6,4]]
输出:1
解释:每个圆包含黑色的节点编号和蓝色的 distanceToLastNode 值。唯一一条受限路径是:1 --> 3 --> 7 。

 

提示:

  • 1 <= n <= 2 * 104
  • n - 1 <= edges.length <= 4 * 104
  • edges[i].length == 3
  • 1 <= ui, vi <= n
  • ui != vi
  • 1 <= weighti <= 105
  • 任意两个节点之间至多存在一条边
  • 任意两个节点之间至少存在一条路径

解法

方法一:堆优化 Dijkstra + 记忆化搜索

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class Solution:
    def countRestrictedPaths(self, n: int, edges: List[List[int]]) -> int:
        @cache
        def dfs(i):
            if i == n:
                return 1
            ans = 0
            for j, _ in g[i]:
                if dist[i] > dist[j]:
                    ans = (ans + dfs(j)) % mod
            return ans

        g = defaultdict(list)
        for u, v, w in edges:
            g[u].append((v, w))
            g[v].append((u, w))
        q = [(0, n)]
        dist = [inf] * (n + 1)
        dist[n] = 0
        mod = 10**9 + 7
        while q:
            _, u = heappop(q)
            for v, w in g[u]:
                if dist[v] > dist[u] + w:
                    dist[v] = dist[u] + w
                    heappush(q, (dist[v], v))
        return dfs(1)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
class Solution {
    private static final int INF = Integer.MAX_VALUE;
    private static final int MOD = (int) 1e9 + 7;
    private List<int[]>[] g;
    private int[] dist;
    private int[] f;
    private int n;

    public int countRestrictedPaths(int n, int[][] edges) {
        this.n = n;
        g = new List[n + 1];
        for (int i = 0; i < g.length; ++i) {
            g[i] = new ArrayList<>();
        }
        for (int[] e : edges) {
            int u = e[0], v = e[1], w = e[2];
            g[u].add(new int[] {v, w});
            g[v].add(new int[] {u, w});
        }
        PriorityQueue<int[]> q = new PriorityQueue<>((a, b) -> a[0] - b[0]);
        q.offer(new int[] {0, n});
        dist = new int[n + 1];
        f = new int[n + 1];
        Arrays.fill(dist, INF);
        Arrays.fill(f, -1);
        dist[n] = 0;
        while (!q.isEmpty()) {
            int[] p = q.poll();
            int u = p[1];
            for (int[] ne : g[u]) {
                int v = ne[0], w = ne[1];
                if (dist[v] > dist[u] + w) {
                    dist[v] = dist[u] + w;
                    q.offer(new int[] {dist[v], v});
                }
            }
        }
        return dfs(1);
    }

    private int dfs(int i) {
        if (f[i] != -1) {
            return f[i];
        }
        if (i == n) {
            return 1;
        }
        int ans = 0;
        for (int[] ne : g[i]) {
            int j = ne[0];
            if (dist[i] > dist[j]) {
                ans = (ans + dfs(j)) % MOD;
            }
        }
        f[i] = ans;
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
using pii = pair<int, int>;

class Solution {
public:
    const int inf = INT_MAX;
    const int mod = 1e9 + 7;
    vector<vector<pii>> g;
    vector<int> dist;
    vector<int> f;
    int n;

    int countRestrictedPaths(int n, vector<vector<int>>& edges) {
        this->n = n;
        g.resize(n + 1);
        dist.assign(n + 1, inf);
        f.assign(n + 1, -1);
        dist[n] = 0;
        for (auto& e : edges) {
            int u = e[0], v = e[1], w = e[2];
            g[u].emplace_back(v, w);
            g[v].emplace_back(u, w);
        }
        priority_queue<pii, vector<pii>, greater<pii>> q;
        q.emplace(0, n);
        while (!q.empty()) {
            auto [_, u] = q.top();
            q.pop();
            for (auto [v, w] : g[u]) {
                if (dist[v] > dist[u] + w) {
                    dist[v] = dist[u] + w;
                    q.emplace(dist[v], v);
                }
            }
        }
        return dfs(1);
    }

    int dfs(int i) {
        if (f[i] != -1) return f[i];
        if (i == n) return 1;
        int ans = 0;
        for (auto [j, _] : g[i]) {
            if (dist[i] > dist[j]) {
                ans = (ans + dfs(j)) % mod;
            }
        }
        f[i] = ans;
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
const inf = math.MaxInt32
const mod = 1e9 + 7

type pair struct {
    first  int
    second int
}

var _ heap.Interface = (*pairs)(nil)

type pairs []pair

func (a pairs) Len() int { return len(a) }
func (a pairs) Less(i int, j int) bool {
    return a[i].first < a[j].first || a[i].first == a[j].first && a[i].second < a[j].second
}
func (a pairs) Swap(i int, j int) { a[i], a[j] = a[j], a[i] }
func (a *pairs) Push(x any)       { *a = append(*a, x.(pair)) }
func (a *pairs) Pop() any         { l := len(*a); t := (*a)[l-1]; *a = (*a)[:l-1]; return t }

func countRestrictedPaths(n int, edges [][]int) int {
    g := make([]pairs, n+1)
    for _, e := range edges {
        u, v, w := e[0], e[1], e[2]
        g[u] = append(g[u], pair{v, w})
        g[v] = append(g[v], pair{u, w})
    }
    dist := make([]int, n+1)
    f := make([]int, n+1)
    for i := range dist {
        dist[i] = inf
        f[i] = -1
    }
    dist[n] = 0
    h := make(pairs, 0)
    heap.Push(&h, pair{0, n})
    for len(h) > 0 {
        u := heap.Pop(&h).(pair).second
        for _, ne := range g[u] {
            v, w := ne.first, ne.second
            if dist[v] > dist[u]+w {
                dist[v] = dist[u] + w
                heap.Push(&h, pair{dist[v], v})
            }
        }
    }
    var dfs func(int) int
    dfs = func(i int) int {
        if f[i] != -1 {
            return f[i]
        }
        if i == n {
            return 1
        }
        ans := 0
        for _, ne := range g[i] {
            j := ne.first
            if dist[i] > dist[j] {
                ans = (ans + dfs(j)) % mod
            }
        }
        f[i] = ans
        return ans
    }
    return dfs(1)
}

方法二

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
class Solution:
    def countRestrictedPaths(self, n: int, edges: List[List[int]]) -> int:
        g = defaultdict(list)
        for u, v, w in edges:
            g[u].append((v, w))
            g[v].append((u, w))
        dist = [inf] * (n + 1)
        dist[n] = 0
        q = [(0, n)]
        mod = 10**9 + 7
        while q:
            _, u = heappop(q)
            for v, w in g[u]:
                if dist[v] > dist[u] + w:
                    dist[v] = dist[u] + w
                    heappush(q, (dist[v], v))
        arr = list(range(1, n + 1))
        arr.sort(key=lambda i: dist[i])
        f = [0] * (n + 1)
        f[n] = 1
        for i in arr:
            for j, _ in g[i]:
                if dist[i] > dist[j]:
                    f[i] = (f[i] + f[j]) % mod
        return f[1]
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
class Solution {
    private static final int INF = Integer.MAX_VALUE;
    private static final int MOD = (int) 1e9 + 7;

    public int countRestrictedPaths(int n, int[][] edges) {
        List<int[]>[] g = new List[n + 1];
        Arrays.setAll(g, k -> new ArrayList<>());
        for (int[] e : edges) {
            int u = e[0], v = e[1], w = e[2];
            g[u].add(new int[] {v, w});
            g[v].add(new int[] {u, w});
        }
        PriorityQueue<int[]> q = new PriorityQueue<>((a, b) -> a[0] - b[0]);
        q.offer(new int[] {0, n});
        int[] dist = new int[n + 1];
        Arrays.fill(dist, INF);
        dist[n] = 0;
        while (!q.isEmpty()) {
            int[] p = q.poll();
            int u = p[1];
            for (int[] ne : g[u]) {
                int v = ne[0], w = ne[1];
                if (dist[v] > dist[u] + w) {
                    dist[v] = dist[u] + w;
                    q.offer(new int[] {dist[v], v});
                }
            }
        }
        int[] f = new int[n + 1];
        f[n] = 1;
        Integer[] arr = new Integer[n];
        for (int i = 0; i < n; ++i) {
            arr[i] = i + 1;
        }
        Arrays.sort(arr, (i, j) -> dist[i] - dist[j]);
        for (int i : arr) {
            for (int[] ne : g[i]) {
                int j = ne[0];
                if (dist[i] > dist[j]) {
                    f[i] = (f[i] + f[j]) % MOD;
                }
            }
        }
        return f[1];
    }
}

评论