跳转至

1508. 子数组和排序后的区间和

题目描述

给你一个数组 nums ,它包含 n 个正整数。你需要计算所有非空连续子数组的和,并将它们按升序排序,得到一个新的包含 n * (n + 1) / 2 个数字的数组。

请你返回在新数组中下标为 left 到 right (下标从 1 开始)的所有数字和(包括左右端点)。由于答案可能很大,请你将它对 10^9 + 7 取模后返回。

 

示例 1:

输入:nums = [1,2,3,4], n = 4, left = 1, right = 5
输出:13 
解释:所有的子数组和为 1, 3, 6, 10, 2, 5, 9, 3, 7, 4 。将它们升序排序后,我们得到新的数组 [1, 2, 3, 3, 4, 5, 6, 7, 9, 10] 。下标从 le = 1 到 ri = 5 的和为 1 + 2 + 3 + 3 + 4 = 13 。

示例 2:

输入:nums = [1,2,3,4], n = 4, left = 3, right = 4
输出:6
解释:给定数组与示例 1 一样,所以新数组为 [1, 2, 3, 3, 4, 5, 6, 7, 9, 10] 。下标从 le = 3 到 ri = 4 的和为 3 + 3 = 6 。

示例 3:

输入:nums = [1,2,3,4], n = 4, left = 1, right = 10
输出:50

 

提示:

  • 1 <= nums.length <= 10^3
  • nums.length == n
  • 1 <= nums[i] <= 100
  • 1 <= left <= right <= n * (n + 1) / 2

解法

方法一:模拟

我们可以按照题目的要求,生成数组 $\textit{arr}$,然后对数组进行排序,最后求出 $[\textit{left}-1, \textit{right}-1]$ 范围的所有元素的和,得到结果。

时间复杂度 $O(n^2 \times \log n)$,空间复杂度 $O(n^2)$。其中 $n$ 为题目给定的数组长度。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
class Solution:
    def rangeSum(self, nums: List[int], n: int, left: int, right: int) -> int:
        arr = []
        for i in range(n):
            s = 0
            for j in range(i, n):
                s += nums[j]
                arr.append(s)
        arr.sort()
        mod = 10**9 + 7
        return sum(arr[left - 1 : right]) % mod
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
class Solution {
    public int rangeSum(int[] nums, int n, int left, int right) {
        int[] arr = new int[n * (n + 1) / 2];
        for (int i = 0, k = 0; i < n; ++i) {
            int s = 0;
            for (int j = i; j < n; ++j) {
                s += nums[j];
                arr[k++] = s;
            }
        }
        Arrays.sort(arr);
        int ans = 0;
        final int mod = (int) 1e9 + 7;
        for (int i = left - 1; i < right; ++i) {
            ans = (ans + arr[i]) % mod;
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
class Solution {
public:
    int rangeSum(vector<int>& nums, int n, int left, int right) {
        int arr[n * (n + 1) / 2];
        for (int i = 0, k = 0; i < n; ++i) {
            int s = 0;
            for (int j = i; j < n; ++j) {
                s += nums[j];
                arr[k++] = s;
            }
        }
        sort(arr, arr + n * (n + 1) / 2);
        int ans = 0;
        const int mod = 1e9 + 7;
        for (int i = left - 1; i < right; ++i) {
            ans = (ans + arr[i]) % mod;
        }
        return ans;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
func rangeSum(nums []int, n int, left int, right int) (ans int) {
    var arr []int
    for i := 0; i < n; i++ {
        s := 0
        for j := i; j < n; j++ {
            s += nums[j]
            arr = append(arr, s)
        }
    }
    sort.Ints(arr)
    const mod int = 1e9 + 7
    for _, x := range arr[left-1 : right] {
        ans = (ans + x) % mod
    }
    return
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
function rangeSum(nums: number[], n: number, left: number, right: number): number {
    let arr = Array((n * (n + 1)) / 2).fill(0);
    const mod = 10 ** 9 + 7;

    for (let i = 0, s = 0, k = 0; i < n; i++, s = 0) {
        for (let j = i; j < n; j++, k++) {
            s += nums[j];
            arr[k] = s;
        }
    }

    arr = arr.sort((a, b) => a - b).slice(left - 1, right);
    return arr.reduce((acc, cur) => (acc + cur) % mod, 0);
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
function rangeSum(nums, n, left, right) {
    let arr = Array((n * (n + 1)) / 2).fill(0);
    const mod = 10 ** 9 + 7;

    for (let i = 0, s = 0, k = 0; i < n; i++, s = 0) {
        for (let j = i; j < n; j++, k++) {
            s += nums[j];
            arr[k] = s;
        }
    }

    arr = arr.sort((a, b) => a - b).slice(left - 1, right);
    return arr.reduce((acc, cur) => acc + cur, 0) % mod;
}

评论