题目描述
给你一个整数数组 nums
,请你找出并返回能被三整除的元素 最大和。
示例 1:
输入:nums = [3,6,5,1,8]
输出:18
解释:选出数字 3, 6, 1 和 8,它们的和是 18(可被 3 整除的最大和)。
示例 2:
输入:nums = [4]
输出:0
解释:4 不能被 3 整除,所以无法选出数字,返回 0。
示例 3:
输入:nums = [1,2,3,4,4]
输出:12
解释:选出数字 1, 3, 4 以及 4,它们的和是 12(可被 3 整除的最大和)。
提示:
1 <= nums.length <= 4 * 104
1 <= nums[i] <= 104
解法
方法一:动态规划
我们定义 $f[i][j]$ 表示前 $i$ 个数中选取若干个数,使得这若干个数的和模 $3$ 余 $j$ 的最大值。初始时 $f[0][0]=0$,其余为 $-\infty$。
对于 $f[i][j]$,我们可以考虑第 $i$ 个数 $x$ 的状态:
- 如果我们不选 $x$,那么 $f[i][j]=f[i-1][j]$;
- 如果我们选 $x$,那么 $f[i][j]=f[i-1][(j-x \bmod 3 + 3)\bmod 3]+x$。
因此我们可以得到状态转移方程:
$$
f[i][j]=\max{f[i-1][j],f[i-1][(j-x \bmod 3 + 3)\bmod 3]+x}
$$
最终答案为 $f[n][0]$。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $nums$ 的长度。
注意到 $f[i][j]$ 的值只与 $f[i-1][j]$ 和 $f[i-1][(j-x \bmod 3 + 3)\bmod 3]$ 有关,因此我们可以使用滚动数组优化空间复杂度,使空间复杂度降低为 $O(1)$。
| class Solution:
def maxSumDivThree(self, nums: List[int]) -> int:
n = len(nums)
f = [[-inf] * 3 for _ in range(n + 1)]
f[0][0] = 0
for i, x in enumerate(nums, 1):
for j in range(3):
f[i][j] = max(f[i - 1][j], f[i - 1][(j - x) % 3] + x)
return f[n][0]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | class Solution {
public int maxSumDivThree(int[] nums) {
int n = nums.length;
final int inf = 1 << 30;
int[][] f = new int[n + 1][3];
f[0][1] = f[0][2] = -inf;
for (int i = 1; i <= n; ++i) {
int x = nums[i - 1];
for (int j = 0; j < 3; ++j) {
f[i][j] = Math.max(f[i - 1][j], f[i - 1][(j - x % 3 + 3) % 3] + x);
}
}
return f[n][0];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
public:
int maxSumDivThree(vector<int>& nums) {
int n = nums.size();
const int inf = 1 << 30;
int f[n + 1][3];
f[0][0] = 0;
f[0][1] = f[0][2] = -inf;
for (int i = 1; i <= n; ++i) {
int x = nums[i - 1];
for (int j = 0; j < 3; ++j) {
f[i][j] = max(f[i - 1][j], f[i - 1][(j - x % 3 + 3) % 3] + x);
}
}
return f[n][0];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13 | func maxSumDivThree(nums []int) int {
n := len(nums)
const inf = 1 << 30
f := make([][3]int, n+1)
f[0] = [3]int{0, -inf, -inf}
for i, x := range nums {
i++
for j := 0; j < 3; j++ {
f[i][j] = max(f[i-1][j], f[i-1][(j-x%3+3)%3]+x)
}
}
return f[n][0]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | function maxSumDivThree(nums: number[]): number {
const n = nums.length;
const inf = 1 << 30;
const f: number[][] = Array(n + 1)
.fill(0)
.map(() => Array(3).fill(-inf));
f[0][0] = 0;
for (let i = 1; i <= n; ++i) {
const x = nums[i - 1];
for (let j = 0; j < 3; ++j) {
f[i][j] = Math.max(f[i - 1][j], f[i - 1][(j - (x % 3) + 3) % 3] + x);
}
}
return f[n][0];
}
|
方法二
| class Solution:
def maxSumDivThree(self, nums: List[int]) -> int:
f = [0, -inf, -inf]
for x in nums:
g = f[:]
for j in range(3):
g[j] = max(f[j], f[(j - x) % 3] + x)
f = g
return f[0]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution {
public int maxSumDivThree(int[] nums) {
final int inf = 1 << 30;
int[] f = new int[] {0, -inf, -inf};
for (int x : nums) {
int[] g = f.clone();
for (int j = 0; j < 3; ++j) {
g[j] = Math.max(f[j], f[(j - x % 3 + 3) % 3] + x);
}
f = g;
}
return f[0];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | class Solution {
public:
int maxSumDivThree(vector<int>& nums) {
const int inf = 1 << 30;
vector<int> f = {0, -inf, -inf};
for (int& x : nums) {
vector<int> g = f;
for (int j = 0; j < 3; ++j) {
g[j] = max(f[j], f[(j - x % 3 + 3) % 3] + x);
}
f = move(g);
}
return f[0];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12 | func maxSumDivThree(nums []int) int {
const inf = 1 << 30
f := [3]int{0, -inf, -inf}
for _, x := range nums {
g := [3]int{}
for j := range f {
g[j] = max(f[j], f[(j-x%3+3)%3]+x)
}
f = g
}
return f[0]
}
|
| function maxSumDivThree(nums: number[]): number {
const inf = 1 << 30;
const f: number[] = [0, -inf, -inf];
for (const x of nums) {
const g = [...f];
for (let j = 0; j < 3; ++j) {
f[j] = Math.max(g[j], g[(j - (x % 3) + 3) % 3] + x);
}
}
return f[0];
}
|