题目描述
给定两个字符串 text1
和 text2
,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0
。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
- 例如,
"ace"
是 "abcde"
的子序列,但 "aec"
不是 "abcde"
的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
示例 1:
输入:text1 = "abcde", text2 = "ace"
输出:3
解释:最长公共子序列是 "ace" ,它的长度为 3 。
示例 2:
输入:text1 = "abc", text2 = "abc"
输出:3
解释:最长公共子序列是 "abc" ,它的长度为 3 。
示例 3:
输入:text1 = "abc", text2 = "def"
输出:0
解释:两个字符串没有公共子序列,返回 0 。
提示:
1 <= text1.length, text2.length <= 1000
text1
和 text2
仅由小写英文字符组成。
注意:本题与主站 1143 题相同: https://leetcode.cn/problems/longest-common-subsequence/
解法
方法一:动态规划
我们定义 $f[i][j]$ 表示 $text1$ 的前 $i$ 个字符和 $text2$ 的前 $j$ 个字符的最长公共子序列的长度。那么答案为 $f[m][n]$,其中 $m$ 和 $n$ 分别为 $text1$ 和 $text2$ 的长度。
如果 $text1$ 的第 $i$ 个字符和 $text2$ 的第 $j$ 个字符相同,则 $f[i][j] = f[i - 1][j - 1] + 1$;如果 $text1$ 的第 $i$ 个字符和 $text2$ 的第 $j$ 个字符不同,则 $f[i][j] = max(f[i - 1][j], f[i][j - 1])$。即状态转移方程为:
$$
f[i][j] =
\begin{cases}
f[i - 1][j - 1] + 1, & text1[i - 1] = text2[j - 1] \
\max(f[i - 1][j], f[i][j - 1]), & text1[i - 1] \neq text2[j - 1]
\end{cases}
$$
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别为 $text1$ 和 $text2$ 的长度。
| class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
m, n = len(text1), len(text2)
f = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if text1[i - 1] == text2[j - 1]:
f[i][j] = f[i - 1][j - 1] + 1
else:
f[i][j] = max(f[i - 1][j], f[i][j - 1])
return f[-1][-1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution {
public int longestCommonSubsequence(String text1, String text2) {
int m = text1.length(), n = text2.length();
int[][] f = new int[m + 1][n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (text1.charAt(i - 1) == text2.charAt(j - 1)) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[m][n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
public:
int longestCommonSubsequence(string text1, string text2) {
int m = text1.size(), n = text2.size();
vector<vector<int>> f(m + 1, vector<int>(n + 1));
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (text1[i - 1] == text2[j - 1]) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[m][n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | func longestCommonSubsequence(text1 string, text2 string) int {
m, n := len(text1), len(text2)
f := make([][]int, m+1)
for i := 0; i <= m; i++ {
f[i] = make([]int, n+1)
}
for i := 1; i <= m; i++ {
for j := 1; j <= n; j++ {
if text1[i-1] == text2[j-1] {
f[i][j] = f[i-1][j-1] + 1
} else {
f[i][j] = max(f[i-1][j], f[i][j-1])
}
}
}
return f[m][n]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | function longestCommonSubsequence(text1: string, text2: string): number {
const m = text1.length;
const n = text2.length;
const f: number[][] = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
if (text1[i - 1] == text2[j - 1]) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[m][n];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | impl Solution {
pub fn longest_common_subsequence(text1: String, text2: String) -> i32 {
let (m, n) = (text1.len(), text2.len());
let (text1, text2) = (text1.as_bytes(), text2.as_bytes());
let mut f = vec![vec![0; n + 1]; m + 1];
for i in 1..=m {
for j in 1..=n {
f[i][j] = if text1[i - 1] == text2[j - 1] {
f[i - 1][j - 1] + 1
} else {
f[i - 1][j].max(f[i][j - 1])
};
}
}
f[m][n]
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | /**
* @param {string} text1
* @param {string} text2
* @return {number}
*/
var longestCommonSubsequence = function (text1, text2) {
const m = text1.length;
const n = text2.length;
const f = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
for (let i = 1; i <= m; ++i) {
for (let j = 1; j <= n; ++j) {
if (text1[i - 1] == text2[j - 1]) {
f[i][j] = f[i - 1][j - 1] + 1;
} else {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1]);
}
}
}
return f[m][n];
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | public class Solution {
public int LongestCommonSubsequence(string text1, string text2) {
int m = text1.Length, n = text2.Length;
int[,] f = new int[m + 1, n + 1];
for (int i = 1; i <= m; ++i) {
for (int j = 1; j <= n; ++j) {
if (text1[i - 1] == text2[j - 1]) {
f[i, j] = f[i - 1, j - 1] + 1;
} else {
f[i, j] = Math.Max(f[i - 1, j], f[i, j - 1]);
}
}
}
return f[m, n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution {
fun longestCommonSubsequence(text1: String, text2: String): Int {
val m = text1.length
val n = text2.length
val f = Array(m + 1) { IntArray(n + 1) }
for (i in 1..m) {
for (j in 1..n) {
if (text1[i - 1] == text2[j - 1]) {
f[i][j] = f[i - 1][j - 1] + 1
} else {
f[i][j] = Math.max(f[i - 1][j], f[i][j - 1])
}
}
}
return f[m][n]
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
func longestCommonSubsequence(_ text1: String, _ text2: String) -> Int {
let m = text1.count, n = text2.count
let text1Array = Array(text1)
let text2Array = Array(text2)
var f = Array(repeating: Array(repeating: 0, count: n + 1), count: m + 1)
for i in 1...m {
for j in 1...n {
if text1Array[i - 1] == text2Array[j - 1] {
f[i][j] = f[i - 1][j - 1] + 1
} else {
f[i][j] = max(f[i - 1][j], f[i][j - 1])
}
}
}
return f[m][n]
}
}
|