题目描述
给定一个二叉树的 根节点 root
,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。
示例 1:
输入: [1,2,3,null,5,null,4]
输出: [1,3,4]
示例 2:
输入: [1,null,3]
输出: [1,3]
示例 3:
输入: []
输出: []
提示:
二叉树的节点个数的范围是 [0,100]
-100 <= Node.val <= 100
注意:本题与主站 199 题相同:https://leetcode.cn/problems/binary-tree-right-side-view/
解法
方法一
Python3 Java C++ Go Swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def rightSideView ( self , root : TreeNode ) -> List [ int ]:
ans = []
if not root :
return ans
d = deque ([ root ])
while d :
n = len ( d )
ans . append ( d [ 0 ] . val )
for i in range ( n ):
node = d . popleft ()
if node . right :
d . append ( node . right )
if node . left :
d . append ( node . left )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List < Integer > rightSideView ( TreeNode root ) {
List < Integer > ans = new ArrayList <> ();
if ( root == null ) {
return ans ;
}
Deque < TreeNode > q = new ArrayDeque <> ();
q . offer ( root );
while ( ! q . isEmpty ()) {
ans . add ( q . peekFirst (). val );
for ( int i = q . size (); i > 0 ; -- i ) {
TreeNode node = q . poll ();
if ( node . right != null ) {
q . offer ( node . right );
}
if ( node . left != null ) {
q . offer ( node . left );
}
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < int > rightSideView ( TreeNode * root ) {
vector < int > ans ;
if ( ! root ) return ans ;
queue < TreeNode *> q ;
q . push ( root );
while ( ! q . empty ()) {
ans . push_back ( q . front () -> val );
for ( int i = q . size (); i > 0 ; -- i ) {
auto node = q . front ();
q . pop ();
if ( node -> right ) q . push ( node -> right );
if ( node -> left ) q . push ( node -> left );
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func rightSideView ( root * TreeNode ) [] int {
var ans [] int
if root == nil {
return ans
}
q := [] * TreeNode { root }
for len ( q ) > 0 {
ans = append ( ans , q [ 0 ]. Val )
for i := len ( q ); i > 0 ; i -- {
node := q [ 0 ]
q = q [ 1 :]
if node . Right != nil {
q = append ( q , node . Right )
}
if node . Left != nil {
q = append ( q , node . Left )
}
}
}
return ans
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45 /* class TreeNode {
* var val: Int
* var left: TreeNode?
* var right: TreeNode?
* init() {
* self.val = 0
* self.left = nil
* self.right = nil
* }
* init(_ val: Int) {
* self.val = val
* self.left = nil
* self.right = nil
* }
* init(_ val: Int, _ left: TreeNode?, _ right: TreeNode?) {
* self.val = val
* self.left = left
* self.right = right
* }
* }
*/
class Solution {
func rightSideView ( _ root : TreeNode ?) -> [ Int ] {
var ans = [ Int ]()
guard let root = root else {
return ans
}
var q = [ TreeNode ]()
q . append ( root )
while ! q . isEmpty {
ans . append ( q [ 0 ]. val )
for _ in 0. .< q . count {
let node = q . removeFirst ()
if let right = node . right {
q . append ( right )
}
if let left = node . left {
q . append ( left )
}
}
}
return ans
}
}