题目描述
给你二叉树的根节点 root
和一个整数目标和 targetSum
,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
示例 1:
输入: root = [5,4,8,11,null,13,4,7,2,null,null,5,1], targetSum = 22
输出: [[5,4,11,2],[5,8,4,5]]
示例 2:
输入: root = [1,2,3], targetSum = 5
输出: []
示例 3:
输入: root = [1,2], targetSum = 0
输出: []
提示:
树中节点总数在范围 [0, 5000]
内
-1000 <= Node.val <= 1000
-1000 <= targetSum <= 1000
注意:本题与主站 113 题相同:https://leetcode.cn/problems/path-sum-ii/
解法
方法一:递归
从根节点开始,递归遍历每个节点,每次递归时,将当前节点值加入到路径中,然后判断当前节点是否为叶子节点,如果是叶子节点并且路径和等于目标值,则将该路径加入到结果中。如果当前节点不是叶子节点,则递归遍历其左右子节点。递归遍历时,需要将当前节点从路径中移除,以确保返回父节点时路径刚好是从根节点到父节点。
时间复杂度 $O(n^2)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数。
Python3 Java C++ Go TypeScript Rust JavaScript C# Swift
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def pathSum ( self , root : TreeNode , target : int ) -> List [ List [ int ]]:
def dfs ( root , s ):
if root is None :
return
t . append ( root . val )
s -= root . val
if root . left is None and root . right is None and s == 0 :
ans . append ( t [:])
dfs ( root . left , s )
dfs ( root . right , s )
t . pop ()
ans = []
t = []
dfs ( root , target )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List < Integer > t = new ArrayList <> ();
private List < List < Integer >> ans = new ArrayList <> ();
public List < List < Integer >> pathSum ( TreeNode root , int target ) {
dfs ( root , target );
return ans ;
}
private void dfs ( TreeNode root , int s ) {
if ( root == null ) {
return ;
}
t . add ( root . val );
s -= root . val ;
if ( root . left == null && root . right == null && s == 0 ) {
ans . add ( new ArrayList <> ( t ));
}
dfs ( root . left , s );
dfs ( root . right , s );
t . remove ( t . size () - 1 );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < vector < int >> pathSum ( TreeNode * root , int target ) {
vector < vector < int >> ans ;
vector < int > t ;
function < void ( TreeNode * root , int s ) > dfs = [ & ]( TreeNode * root , int s ) {
if ( ! root ) {
return ;
}
t . push_back ( root -> val );
s -= root -> val ;
if ( ! root -> left && ! root -> right && ! s ) {
ans . push_back ( t );
}
dfs ( root -> left , s );
dfs ( root -> right , s );
t . pop_back ();
};
dfs ( root , target );
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func pathSum ( root * TreeNode , target int ) ( ans [][] int ) {
t := [] int {}
var dfs func ( * TreeNode , int )
dfs = func ( root * TreeNode , s int ) {
if root == nil {
return
}
t = append ( t , root . Val )
s -= root . Val
if root . Left == nil && root . Right == nil && s == 0 {
ans = append ( ans , slices . Clone ( t ))
}
dfs ( root . Left , s )
dfs ( root . Right , s )
t = t [: len ( t ) - 1 ]
}
dfs ( root , target )
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function pathSum ( root : TreeNode | null , target : number ) : number [][] {
const ans : number [][] = [];
const t : number [] = [];
const dfs = ( root : TreeNode | null , s : number ) : void => {
if ( ! root ) {
return ;
}
const { val , left , right } = root ;
t . push ( val );
s -= val ;
if ( ! left && ! right && s === 0 ) {
ans . push ([... t ]);
}
dfs ( left , s );
dfs ( right , s );
t . pop ();
};
dfs ( root , target );
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
fn dfs (
root : & Option < Rc < RefCell < TreeNode >>> ,
mut target : i32 ,
t : & mut Vec < i32 > ,
ans : & mut Vec < Vec < i32 >> ,
) {
if let Some ( node ) = root . as_ref () {
let node = node . borrow ();
t . push ( node . val );
target -= node . val ;
if node . left . is_none () && node . right . is_none () && target == 0 {
ans . push ( t . clone ());
}
Self :: dfs ( & node . left , target , t , ans );
Self :: dfs ( & node . right , target , t , ans );
t . pop ();
}
}
pub fn path_sum ( root : Option < Rc < RefCell < TreeNode >>> , target : i32 ) -> Vec < Vec < i32 >> {
let mut ans = vec! [];
Self :: dfs ( & root , target , & mut vec! [], & mut ans );
ans
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @param {number} target
* @return {number[][]}
*/
var pathSum = function ( root , target ) {
const ans = [];
const t = [];
const dfs = ( root , s ) => {
if ( ! root ) {
return ;
}
const { val , left , right } = root ;
t . push ( val );
s -= val ;
if ( ! left && ! right && ! s ) {
ans . push ([... t ]);
}
dfs ( left , s );
dfs ( right , s );
t . pop ();
};
dfs ( root , target );
return ans ;
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 /**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
public class Solution {
private List < IList < int >> ans = new List < IList < int >> ();
private List < int > t = new List < int > ();
public IList < IList < int >> PathSum ( TreeNode root , int target ) {
dfs ( root , target );
return ans ;
}
private void dfs ( TreeNode root , int s ) {
if ( root == null ) {
return ;
}
t . Add ( root . val );
s -= root . val ;
if ( root . left == null && root . right == null && s == 0 ) {
ans . Add ( new List < int > ( t ));
}
dfs ( root . left , s );
dfs ( root . right , s );
t . RemoveAt ( t . Count - 1 );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 /**
* Definition for a binary tree node.
* public class TreeNode {
* public var val: Int
* public var left: TreeNode?
* public var right: TreeNode?
* public init() { self.val = 0; self.left = nil; self.right = nil; }
* public init(_ val: Int) { self.val = val; self.left = nil; self.right = nil; }
* public init(_ val: Int, _ left: TreeNode?, _ right: TreeNode?) {
* self.val = val
* self.left = left
* self.right = right
* }
* }
*/
class Solution {
private var t = [ Int ]()
private var ans = [[ Int ]]()
func pathSum ( _ root : TreeNode ?, _ target : Int ) -> [[ Int ]] {
dfs ( root , target )
return ans
}
private func dfs ( _ root : TreeNode ?, _ s : Int ) {
guard let root = root else {
return
}
t . append ( root . val )
let remainingSum = s - root . val
if root . left == nil && root . right == nil && remainingSum == 0 {
ans . append ( Array ( t ))
}
dfs ( root . left , remainingSum )
dfs ( root . right , remainingSum )
t . removeLast ()
}
}