题目描述
地上有一个m行n列的方格,从坐标 [0,0]
到坐标 [m-1,n-1]
。一个机器人从坐标 [0, 0]
的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例 1:
输入:m = 2, n = 3, k = 1
输出:3
示例 2:
输入:m = 3, n = 1, k = 0
输出:1
提示:
1 <= n,m <= 100
0 <= k <= 20
解法
方法一:DFS + 哈希表
由于部分单元格不可达,因此,我们不能直接枚举所有坐标点 $(i, j)$ 进行判断,而是应该从起点 $(0, 0)$ 出发,搜索所有可达的节点,记录答案。
过程中,为了避免重复搜索同一个单元格,我们可以使用数组或哈希表记录所有访问过的节点。
时间复杂度 $O(m \times n)$,空间复杂度 $O(m \times n)$。其中 $m$ 和 $n$ 分别为方格的行数和列数。
1
2
3
4
5
6
7
8
9
10
11
12
13 | class Solution:
def movingCount(self, m: int, n: int, k: int) -> int:
def f(x: int) -> int:
return x // 10 + x % 10
def dfs(i, j):
if i >= m or j >= n or f(i) + f(j) > k or (i, j) in vis:
return 0
vis.add((i, j))
return 1 + dfs(i + 1, j) + dfs(i, j + 1)
vis = set()
return dfs(0, 0)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution {
private boolean[][] vis;
private int m;
private int n;
private int k;
public int movingCount(int m, int n, int k) {
this.m = m;
this.n = n;
this.k = k;
vis = new boolean[m][n];
return dfs(0, 0);
}
private int dfs(int i, int j) {
if (i >= m || j >= n || vis[i][j] || (i % 10 + i / 10 + j % 10 + j / 10) > k) {
return 0;
}
vis[i][j] = true;
return 1 + dfs(i + 1, j) + dfs(i, j + 1);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution {
public:
int movingCount(int m, int n, int k) {
bool vis[m][n];
memset(vis, false, sizeof vis);
auto f = [](int x) {
return x / 10 + x % 10;
};
function<int(int i, int j)> dfs = [&](int i, int j) -> int {
if (i < 0 || i >= m || j < 0 || j >= n || vis[i][j] || f(i) + f(j) > k) {
return false;
}
vis[i][j] = true;
return 1 + dfs(i + 1, j) + dfs(i, j + 1);
};
return dfs(0, 0);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | func movingCount(m int, n int, k int) int {
vis := make([][]bool, m)
for i := range vis {
vis[i] = make([]bool, n)
}
var dfs func(i, j int) int
dfs = func(i, j int) int {
if i >= m || j >= n || vis[i][j] || (i%10+i/10+j%10+j/10) > k {
return 0
}
vis[i][j] = true
return 1 + dfs(i+1, j) + dfs(i, j+1)
}
return dfs(0, 0)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | function movingCount(m: number, n: number, k: number): number {
const vis: boolean[] = Array(m * n).fill(false);
const f = (x: number): number => {
return ((x / 10) | 0) + (x % 10);
};
const dfs = (i: number, j: number): number => {
if (i >= m || j >= n || vis[i * n + j] || f(i) + f(j) > k) {
return 0;
}
vis[i * n + j] = true;
return 1 + dfs(i + 1, j) + dfs(i, j + 1);
};
return dfs(0, 0);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | /**
* @param {number} m
* @param {number} n
* @param {number} k
* @return {number}
*/
var movingCount = function (m, n, k) {
const vis = Array(m * n).fill(false);
const f = x => {
return ((x / 10) | 0) + (x % 10);
};
const dfs = (i, j) => {
if (i >= m || j >= n || vis[i * n + j] || f(i) + f(j) > k) {
return 0;
}
vis[i * n + j] = true;
return 1 + dfs(i + 1, j) + dfs(i, j + 1);
};
return dfs(0, 0);
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | public class Solution {
public int MovingCount(int m, int n, int k) {
bool[,] arr = new bool[m, n];
return dfs(0, 0, m, n, k, arr);
}
public int dfs(int i, int j, int m, int n, int k, bool[,] arr) {
if (i >= m || j >= n || arr[i,j] || (i % 10 + j % 10 + i / 10 + j / 10) > k) {
return 0;
}
arr[i,j] = true;
return 1 + dfs(i+1, j, m, n, k, arr) + dfs(i, j+1, m, n, k, arr);
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | class Solution {
private var vis: [[Bool]] = []
private var m: Int = 0
private var n: Int = 0
private var k: Int = 0
func movingCount(_ m: Int, _ n: Int, _ k: Int) -> Int {
self.m = m
self.n = n
self.k = k
self.vis = Array(repeating: Array(repeating: false, count: n), count: m)
return dfs(0, 0)
}
private func dfs(_ i: Int, _ j: Int) -> Int {
if i >= m || j >= n || vis[i][j] || (digitSum(i) + digitSum(j)) > k {
return 0
}
vis[i][j] = true
return 1 + dfs(i + 1, j) + dfs(i, j + 1)
}
private func digitSum(_ num: Int) -> Int {
var num = num
var sum = 0
while num > 0 {
sum += num % 10
num /= 10
}
return sum
}
}
|