题目描述
返回所有长度为 n
且满足其每两个连续位上的数字之间的差的绝对值为 k
的 非负整数 。
请注意,除了 数字 0
本身之外,答案中的每个数字都 不能 有前导零。例如,01
有一个前导零,所以是无效的;但 0
是有效的。
你可以按 任何顺序 返回答案。
示例 1:
输入:n = 3, k = 7
输出:[181,292,707,818,929]
解释:注意,070 不是一个有效的数字,因为它有前导零。
示例 2:
输入:n = 2, k = 1
输出:[10,12,21,23,32,34,43,45,54,56,65,67,76,78,87,89,98]
示例 3:
输入:n = 2, k = 0
输出:[11,22,33,44,55,66,77,88,99]
示例 4:
输入:n = 2, k = 2
输出:[13,20,24,31,35,42,46,53,57,64,68,75,79,86,97]
提示:
解法
方法一:DFS
我们可以枚举所有长度为 $n$ 的数字的第一个数字,然后使用深度优先搜索的方法,递归地构造所有符合条件的数字。
具体地,我们首先定义一个边界值 $\textit{boundary} = 10^{n-1}$,表示我们需要构造的数字的最小值。然后,我们从 $1$ 到 $9$ 枚举第一个数字,对于每一个数字 $i$,我们递归地构造以 $i$ 为第一个数字的长度为 $n$ 的数字。
时间复杂度 $(n \times 2^n \times |\Sigma|)$,其中 $|\Sigma|$ 表示数字集合,本题中 $|\Sigma| = 9$。空间复杂度 $O(2^n)$。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | class Solution:
def numsSameConsecDiff(self, n: int, k: int) -> List[int]:
def dfs(x: int):
if x >= boundary:
ans.append(x)
return
last = x % 10
if last + k <= 9:
dfs(x * 10 + last + k)
if last - k >= 0 and k != 0:
dfs(x * 10 + last - k)
ans = []
boundary = 10 ** (n - 1)
for i in range(1, 10):
dfs(i)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | class Solution {
private List<Integer> ans = new ArrayList<>();
private int boundary;
private int k;
public int[] numsSameConsecDiff(int n, int k) {
this.k = k;
boundary = (int) Math.pow(10, n - 1);
for (int i = 1; i < 10; ++i) {
dfs(i);
}
return ans.stream().mapToInt(i -> i).toArray();
}
private void dfs(int x) {
if (x >= boundary) {
ans.add(x);
return;
}
int last = x % 10;
if (last + k < 10) {
dfs(x * 10 + last + k);
}
if (k != 0 && last - k >= 0) {
dfs(x * 10 + last - k);
}
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | class Solution {
public:
vector<int> numsSameConsecDiff(int n, int k) {
vector<int> ans;
int boundary = pow(10, n - 1);
auto dfs = [&](this auto&& dfs, int x) {
if (x >= boundary) {
ans.push_back(x);
return;
}
int last = x % 10;
if (last + k < 10) {
dfs(x * 10 + last + k);
}
if (k != 0 && last - k >= 0) {
dfs(x * 10 + last - k);
}
};
for (int i = 1; i < 10; ++i) {
dfs(i);
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | func numsSameConsecDiff(n int, k int) (ans []int) {
bounary := int(math.Pow10(n - 1))
var dfs func(int)
dfs = func(x int) {
if x >= bounary {
ans = append(ans, x)
return
}
last := x % 10
if last+k < 10 {
dfs(x*10 + last + k)
}
if k > 0 && last-k >= 0 {
dfs(x*10 + last - k)
}
}
for i := 1; i < 10; i++ {
dfs(i)
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | function numsSameConsecDiff(n: number, k: number): number[] {
const ans: number[] = [];
const boundary = 10 ** (n - 1);
const dfs = (x: number) => {
if (x >= boundary) {
ans.push(x);
return;
}
const last = x % 10;
if (last + k < 10) {
dfs(x * 10 + last + k);
}
if (k > 0 && last - k >= 0) {
dfs(x * 10 + last - k);
}
};
for (let i = 1; i < 10; i++) {
dfs(i);
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | /**
* @param {number} n
* @param {number} k
* @return {number[]}
*/
var numsSameConsecDiff = function (n, k) {
const ans = [];
const boundary = 10 ** (n - 1);
const dfs = x => {
if (x >= boundary) {
ans.push(x);
return;
}
const last = x % 10;
if (last + k < 10) {
dfs(x * 10 + last + k);
}
if (k > 0 && last - k >= 0) {
dfs(x * 10 + last - k);
}
};
for (let i = 1; i < 10; i++) {
dfs(i);
}
return ans;
};
|