题目描述
n
块石头放置在二维平面中的一些整数坐标点上。每个坐标点上最多只能有一块石头。
如果一块石头的 同行或者同列 上有其他石头存在,那么就可以移除这块石头。
给你一个长度为 n
的数组 stones
,其中 stones[i] = [xi, yi]
表示第 i
块石头的位置,返回 可以移除的石子 的最大数量。
示例 1:
输入:stones = [[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]]
输出:5
解释:一种移除 5 块石头的方法如下所示:
1. 移除石头 [2,2] ,因为它和 [2,1] 同行。
2. 移除石头 [2,1] ,因为它和 [0,1] 同列。
3. 移除石头 [1,2] ,因为它和 [1,0] 同行。
4. 移除石头 [1,0] ,因为它和 [0,0] 同列。
5. 移除石头 [0,1] ,因为它和 [0,0] 同行。
石头 [0,0] 不能移除,因为它没有与另一块石头同行/列。
示例 2:
输入:stones = [[0,0],[0,2],[1,1],[2,0],[2,2]]
输出:3
解释:一种移除 3 块石头的方法如下所示:
1. 移除石头 [2,2] ,因为它和 [2,0] 同行。
2. 移除石头 [2,0] ,因为它和 [0,0] 同列。
3. 移除石头 [0,2] ,因为它和 [0,0] 同行。
石头 [0,0] 和 [1,1] 不能移除,因为它们没有与另一块石头同行/列。
示例 3:
输入:stones = [[0,0]]
输出:0
解释:[0,0] 是平面上唯一一块石头,所以不可以移除它。
提示:
1 <= stones.length <= 1000
0 <= xi, yi <= 104
- 不会有两块石头放在同一个坐标点上
解法
方法一:并查集
我们可以用并查集维护石头之间的关系。如果两块石头在同一行或同一列,我们就认为它们之间有关系,可以通过并查集将它们连接起来。最后,我们统计并查集中有多少个连通分量,这个数值就是可以剩余的石头的数量,那么总共可以移除的石头数量就是石头总数减去剩余的石头数量。我们也可以在合并的时候,记录成功合并的次数,这个次数就是可以移除的石头的数量。
时间复杂度 $O(n^2 \times \alpha(n))$,空间复杂度 $O(n)$。其中 $n$ 为石头的数量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | class UnionFind:
def __init__(self, n):
self.p = list(range(n))
self.size = [1] * n
def find(self, x):
if self.p[x] != x:
self.p[x] = self.find(self.p[x])
return self.p[x]
def union(self, a, b):
pa, pb = self.find(a), self.find(b)
if pa == pb:
return False
if self.size[pa] > self.size[pb]:
self.p[pb] = pa
self.size[pa] += self.size[pb]
else:
self.p[pa] = pb
self.size[pb] += self.size[pa]
return True
class Solution:
def removeStones(self, stones: List[List[int]]) -> int:
uf = UnionFind(len(stones))
ans = 0
for i, (x1, y1) in enumerate(stones):
for j, (x2, y2) in enumerate(stones[:i]):
if x1 == x2 or y1 == y2:
ans += uf.union(i, j)
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51 | class UnionFind {
private final int[] p;
private final int[] size;
public UnionFind(int n) {
p = new int[n];
size = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
size[i] = 1;
}
}
public int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
public boolean union(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return false;
}
if (size[pa] > size[pb]) {
p[pb] = pa;
size[pa] += size[pb];
} else {
p[pa] = pb;
size[pb] += size[pa];
}
return true;
}
}
class Solution {
public int removeStones(int[][] stones) {
int n = stones.length;
UnionFind uf = new UnionFind(n);
int ans = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (stones[i][0] == stones[j][0] || stones[i][1] == stones[j][1]) {
ans += uf.union(i, j) ? 1 : 0;
}
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 | class UnionFind {
public:
UnionFind(int n) {
p = vector<int>(n);
size = vector<int>(n, 1);
iota(p.begin(), p.end(), 0);
}
bool unite(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return false;
}
if (size[pa] > size[pb]) {
p[pb] = pa;
size[pa] += size[pb];
} else {
p[pa] = pb;
size[pb] += size[pa];
}
return true;
}
int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
private:
vector<int> p, size;
};
class Solution {
public:
int removeStones(vector<vector<int>>& stones) {
int n = stones.size();
UnionFind uf(n);
int ans = 0;
for (int i = 0; i < n; ++i) {
for (int j = 0; j < i; ++j) {
if (stones[i][0] == stones[j][0] || stones[i][1] == stones[j][1]) {
ans += uf.unite(i, j);
}
}
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 | type unionFind struct {
p, size []int
}
func newUnionFind(n int) *unionFind {
p := make([]int, n)
size := make([]int, n)
for i := range p {
p[i] = i
size[i] = 1
}
return &unionFind{p, size}
}
func (uf *unionFind) find(x int) int {
if uf.p[x] != x {
uf.p[x] = uf.find(uf.p[x])
}
return uf.p[x]
}
func (uf *unionFind) union(a, b int) bool {
pa, pb := uf.find(a), uf.find(b)
if pa == pb {
return false
}
if uf.size[pa] > uf.size[pb] {
uf.p[pb] = pa
uf.size[pa] += uf.size[pb]
} else {
uf.p[pa] = pb
uf.size[pb] += uf.size[pa]
}
return true
}
func removeStones(stones [][]int) (ans int) {
n := len(stones)
uf := newUnionFind(n)
for i, s1 := range stones {
for j, s2 := range stones[:i] {
if s1[0] == s2[0] || s1[1] == s2[1] {
if uf.union(i, j) {
ans++
}
}
}
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 | class UnionFind {
p: number[];
size: number[];
constructor(n: number) {
this.p = Array.from({ length: n }, (_, i) => i);
this.size = Array(n).fill(1);
}
find(x: number): number {
if (this.p[x] !== x) {
this.p[x] = this.find(this.p[x]);
}
return this.p[x];
}
union(a: number, b: number): boolean {
const [pa, pb] = [this.find(a), this.find(b)];
if (pa === pb) {
return false;
}
if (this.size[pa] > this.size[pb]) {
this.p[pb] = pa;
this.size[pa] += this.size[pb];
} else {
this.p[pa] = pb;
this.size[pb] += this.size[pa];
}
return true;
}
}
function removeStones(stones: number[][]): number {
const n = stones.length;
const uf = new UnionFind(n);
let ans = 0;
for (let i = 0; i < n; ++i) {
for (let j = 0; j < i; ++j) {
if (stones[i][0] === stones[j][0] || stones[i][1] === stones[j][1]) {
ans += uf.union(i, j) ? 1 : 0;
}
}
}
return ans;
}
|
方法二:并查集(优化)
我们可以将石头的纵坐标加上一个偏移量,这样就可以将横坐标和纵坐标统一起来,然后用并查集维护横坐标和纵坐标之间的关系。
我们遍历每一块石头,将横坐标与纵坐标进行合并。
最后,我们再遍历所有石头,将每块石头的横坐标的根节点放到一个集合中,那么这个集合的数量就是可以剩余的石头的数量,总共可以移除的石头数量就是石头总数减去剩余的石头数量。
时间复杂度 $O(n \times \alpha(m))$,空间复杂度 $O(m)$。其中 $n$ 和 $m$ 分别为石头的数量和横纵坐标的最大值。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class UnionFind:
def __init__(self, n):
self.p = list(range(n))
self.size = [1] * n
def find(self, x):
if self.p[x] != x:
self.p[x] = self.find(self.p[x])
return self.p[x]
def union(self, a, b):
pa, pb = self.find(a), self.find(b)
if pa == pb:
return False
if self.size[pa] > self.size[pb]:
self.p[pb] = pa
self.size[pa] += self.size[pb]
else:
self.p[pa] = pb
self.size[pb] += self.size[pa]
return True
class Solution:
def removeStones(self, stones: List[List[int]]) -> int:
m = 10001
uf = UnionFind(m << 1)
for x, y in stones:
uf.union(x, y + m)
return len(stones) - len({uf.find(x) for x, _ in stones})
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 | class UnionFind {
private final int[] p;
private final int[] size;
public UnionFind(int n) {
p = new int[n];
size = new int[n];
for (int i = 0; i < n; ++i) {
p[i] = i;
size[i] = 1;
}
}
public int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
public boolean union(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return false;
}
if (size[pa] > size[pb]) {
p[pb] = pa;
size[pa] += size[pb];
} else {
p[pa] = pb;
size[pb] += size[pa];
}
return true;
}
}
class Solution {
public int removeStones(int[][] stones) {
int m = 10001;
UnionFind uf = new UnionFind(m << 1);
for (var st : stones) {
uf.union(st[0], st[1] + m);
}
Set<Integer> s = new HashSet<>();
for (var st : stones) {
s.add(uf.find(st[0]));
}
return stones.length - s.size();
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 | class UnionFind {
public:
UnionFind(int n) {
p = vector<int>(n);
size = vector<int>(n, 1);
iota(p.begin(), p.end(), 0);
}
bool unite(int a, int b) {
int pa = find(a), pb = find(b);
if (pa == pb) {
return false;
}
if (size[pa] > size[pb]) {
p[pb] = pa;
size[pa] += size[pb];
} else {
p[pa] = pb;
size[pb] += size[pa];
}
return true;
}
int find(int x) {
if (p[x] != x) {
p[x] = find(p[x]);
}
return p[x];
}
private:
vector<int> p, size;
};
class Solution {
public:
int removeStones(vector<vector<int>>& stones) {
int m = 10001;
UnionFind uf(m << 1);
for (auto& st : stones) {
uf.unite(st[0], st[1] + m);
}
unordered_set<int> s;
for (auto& st : stones) {
s.insert(uf.find(st[0]));
}
return stones.size() - s.size();
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 | type unionFind struct {
p, size []int
}
func newUnionFind(n int) *unionFind {
p := make([]int, n)
size := make([]int, n)
for i := range p {
p[i] = i
size[i] = 1
}
return &unionFind{p, size}
}
func (uf *unionFind) find(x int) int {
if uf.p[x] != x {
uf.p[x] = uf.find(uf.p[x])
}
return uf.p[x]
}
func (uf *unionFind) union(a, b int) bool {
pa, pb := uf.find(a), uf.find(b)
if pa == pb {
return false
}
if uf.size[pa] > uf.size[pb] {
uf.p[pb] = pa
uf.size[pa] += uf.size[pb]
} else {
uf.p[pa] = pb
uf.size[pb] += uf.size[pa]
}
return true
}
func removeStones(stones [][]int) (ans int) {
m := 10001
uf := newUnionFind(m << 1)
for _, st := range stones {
uf.union(st[0], st[1]+m)
}
s := map[int]bool{}
for _, st := range stones {
s[uf.find(st[0])] = true
}
return len(stones) - len(s)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 | class UnionFind {
p: number[];
size: number[];
constructor(n: number) {
this.p = Array.from({ length: n }, (_, i) => i);
this.size = Array(n).fill(1);
}
find(x: number): number {
if (this.p[x] !== x) {
this.p[x] = this.find(this.p[x]);
}
return this.p[x];
}
union(a: number, b: number): boolean {
const [pa, pb] = [this.find(a), this.find(b)];
if (pa === pb) {
return false;
}
if (this.size[pa] > this.size[pb]) {
this.p[pb] = pa;
this.size[pa] += this.size[pb];
} else {
this.p[pa] = pb;
this.size[pb] += this.size[pa];
}
return true;
}
}
function removeStones(stones: number[][]): number {
const m = 10001;
const uf = new UnionFind(m << 1);
for (const [x, y] of stones) {
uf.union(x, y + m);
}
const s = new Set<number>();
for (const [x, _] of stones) {
s.add(uf.find(x));
}
return stones.length - s.size;
}
|
Solution 3: DFS