题目描述
给定 pushed
和 popped
两个序列,每个序列中的 值都不重复,只有当它们可能是在最初空栈上进行的推入 push 和弹出 pop 操作序列的结果时,返回 true
;否则,返回 false
。
示例 1:
输入:pushed = [1,2,3,4,5], popped = [4,5,3,2,1]
输出:true
解释:我们可以按以下顺序执行:
push(1), push(2), push(3), push(4), pop() -> 4,
push(5), pop() -> 5, pop() -> 3, pop() -> 2, pop() -> 1
示例 2:
输入:pushed = [1,2,3,4,5], popped = [4,3,5,1,2]
输出:false
解释:1 不能在 2 之前弹出。
提示:
1 <= pushed.length <= 1000
0 <= pushed[i] <= 1000
pushed
的所有元素 互不相同
popped.length == pushed.length
popped
是 pushed
的一个排列
解法
方法一:栈模拟
我们遍历 $\textit{pushed}$ 数组,对于当前遍历到的元素 $x$,我们将其压入栈 $\textit{stk}$ 中,然后判断栈顶元素是否和 $\textit{popped}$ 数组中下一个要弹出的元素相等,如果相等,我们就将栈顶元素弹出并将 $\textit{popped}$ 数组中下一个要弹出的元素的索引 $i$ 加一。最后,如果要弹出的元素都能按照 $\textit{popped}$ 数组的顺序弹出,返回 $\textit{true}$,否则返回 $\textit{false}$。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为 $\textit{pushed}$ 数组的长度。
| class Solution:
def validateStackSequences(self, pushed: List[int], popped: List[int]) -> bool:
stk = []
i = 0
for x in pushed:
stk.append(x)
while stk and stk[-1] == popped[i]:
stk.pop()
i += 1
return i == len(popped)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution {
public boolean validateStackSequences(int[] pushed, int[] popped) {
Deque<Integer> stk = new ArrayDeque<>();
int i = 0;
for (int x : pushed) {
stk.push(x);
while (!stk.isEmpty() && stk.peek() == popped[i]) {
stk.pop();
++i;
}
}
return i == popped.length;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | class Solution {
public:
bool validateStackSequences(vector<int>& pushed, vector<int>& popped) {
stack<int> stk;
int i = 0;
for (int x : pushed) {
stk.push(x);
while (stk.size() && stk.top() == popped[i]) {
stk.pop();
++i;
}
}
return i == popped.size();
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12 | func validateStackSequences(pushed []int, popped []int) bool {
stk := []int{}
i := 0
for _, x := range pushed {
stk = append(stk, x)
for len(stk) > 0 && stk[len(stk)-1] == popped[i] {
stk = stk[:len(stk)-1]
i++
}
}
return i == len(popped)
}
|
1
2
3
4
5
6
7
8
9
10
11
12 | function validateStackSequences(pushed: number[], popped: number[]): boolean {
const stk: number[] = [];
let i = 0;
for (const x of pushed) {
stk.push(x);
while (stk.length && stk.at(-1)! === popped[i]) {
stk.pop();
i++;
}
}
return i === popped.length;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | impl Solution {
pub fn validate_stack_sequences(pushed: Vec<i32>, popped: Vec<i32>) -> bool {
let mut stk: Vec<i32> = Vec::new();
let mut i = 0;
for &x in &pushed {
stk.push(x);
while !stk.is_empty() && *stk.last().unwrap() == popped[i] {
stk.pop();
i += 1;
}
}
i == popped.len()
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | /**
* @param {number[]} pushed
* @param {number[]} popped
* @return {boolean}
*/
var validateStackSequences = function (pushed, popped) {
const stk = [];
let i = 0;
for (const x of pushed) {
stk.push(x);
while (stk.length && stk.at(-1) === popped[i]) {
stk.pop();
i++;
}
}
return i === popped.length;
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | public class Solution {
public bool ValidateStackSequences(int[] pushed, int[] popped) {
Stack<int> stk = new Stack<int>();
int i = 0;
foreach (int x in pushed) {
stk.Push(x);
while (stk.Count > 0 && stk.Peek() == popped[i]) {
stk.Pop();
i++;
}
}
return i == popped.Length;
}
}
|