栈
树
深度优先搜索
二叉树
题目描述
给定一个二叉树的根节点 root
,返回 它的 中序 遍历 。
示例 1:
输入: root = [1,null,2,3]
输出: [1,3,2]
示例 2:
输入: root = []
输出: []
示例 3:
输入: root = [1]
输出: [1]
提示:
树中节点数目在范围 [0, 100]
内
-100 <= Node.val <= 100
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
解法
方法一:递归遍历
我们先递归左子树,再访问根节点,接着递归右子树。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数,空间复杂度主要取决于递归调用的栈空间。
Python3 Java C++ Go TypeScript Rust JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def inorderTraversal ( self , root : Optional [ TreeNode ]) -> List [ int ]:
def dfs ( root ):
if root is None :
return
dfs ( root . left )
ans . append ( root . val )
dfs ( root . right )
ans = []
dfs ( root )
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private List < Integer > ans = new ArrayList <> ();
public List < Integer > inorderTraversal ( TreeNode root ) {
dfs ( root );
return ans ;
}
private void dfs ( TreeNode root ) {
if ( root == null ) {
return ;
}
dfs ( root . left );
ans . add ( root . val );
dfs ( root . right );
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < int > inorderTraversal ( TreeNode * root ) {
vector < int > ans ;
function < void ( TreeNode * ) > dfs = [ & ]( TreeNode * root ) {
if ( ! root ) {
return ;
}
dfs ( root -> left );
ans . push_back ( root -> val );
dfs ( root -> right );
};
dfs ( root );
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func inorderTraversal ( root * TreeNode ) ( ans [] int ) {
var dfs func ( * TreeNode )
dfs = func ( root * TreeNode ) {
if root == nil {
return
}
dfs ( root . Left )
ans = append ( ans , root . Val )
dfs ( root . Right )
}
dfs ( root )
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function inorderTraversal ( root : TreeNode | null ) : number [] {
const ans : number [] = [];
const dfs = ( root : TreeNode | null ) => {
if ( ! root ) {
return ;
}
dfs ( root . left );
ans . push ( root . val );
dfs ( root . right );
};
dfs ( root );
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
fn dfs ( root : & Option < Rc < RefCell < TreeNode >>> , ans : & mut Vec < i32 > ) {
if root . is_none () {
return ;
}
let node = root . as_ref (). unwrap (). borrow ();
Self :: dfs ( & node . left , ans );
ans . push ( node . val );
Self :: dfs ( & node . right , ans );
}
pub fn inorder_traversal ( root : Option < Rc < RefCell < TreeNode >>> ) -> Vec < i32 > {
let mut ans = vec! [];
Self :: dfs ( & root , & mut ans );
ans
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var inorderTraversal = function ( root ) {
const ans = [];
const dfs = root => {
if ( ! root ) {
return ;
}
dfs ( root . left );
ans . push ( root . val );
dfs ( root . right );
};
dfs ( root );
return ans ;
};
方法二:栈实现非递归遍历
非递归的思路如下:
定义一个栈 $stk$
将树的左节点依次入栈
左节点为空时,弹出栈顶元素并处理
重复 2-3 的操作
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉树的节点数,空间复杂度主要取决于栈空间。
Python3 Java C++ Go TypeScript Rust JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def inorderTraversal ( self , root : Optional [ TreeNode ]) -> List [ int ]:
ans , stk = [], []
while root or stk :
if root :
stk . append ( root )
root = root . left
else :
root = stk . pop ()
ans . append ( root . val )
root = root . right
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List < Integer > inorderTraversal ( TreeNode root ) {
List < Integer > ans = new ArrayList <> ();
Deque < TreeNode > stk = new ArrayDeque <> ();
while ( root != null || ! stk . isEmpty ()) {
if ( root != null ) {
stk . push ( root );
root = root . left ;
} else {
root = stk . pop ();
ans . add ( root . val );
root = root . right ;
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < int > inorderTraversal ( TreeNode * root ) {
vector < int > ans ;
stack < TreeNode *> stk ;
while ( root || stk . size ()) {
if ( root ) {
stk . push ( root );
root = root -> left ;
} else {
root = stk . top ();
stk . pop ();
ans . push_back ( root -> val );
root = root -> right ;
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func inorderTraversal ( root * TreeNode ) ( ans [] int ) {
stk := [] * TreeNode {}
for root != nil || len ( stk ) > 0 {
if root != nil {
stk = append ( stk , root )
root = root . Left
} else {
root = stk [ len ( stk ) - 1 ]
stk = stk [: len ( stk ) - 1 ]
ans = append ( ans , root . Val )
root = root . Right
}
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function inorderTraversal ( root : TreeNode | null ) : number [] {
const stk : TreeNode [] = [];
const ans : number [] = [];
while ( root || stk . length > 0 ) {
if ( root ) {
stk . push ( root );
root = root . left ;
} else {
root = stk . pop ();
ans . push ( root . val );
root = root . right ;
}
}
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
pub fn inorder_traversal ( mut root : Option < Rc < RefCell < TreeNode >>> ) -> Vec < i32 > {
let mut ans = vec! [];
let mut stk = vec! [];
while root . is_some () || ! stk . is_empty () {
if root . is_some () {
let next = root . as_mut (). unwrap (). borrow_mut (). left . take ();
stk . push ( root );
root = next ;
} else {
let mut node = stk . pop (). unwrap ();
let mut node = node . as_mut (). unwrap (). borrow_mut ();
ans . push ( node . val );
root = node . right . take ();
}
}
ans
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var inorderTraversal = function ( root ) {
const stk = [];
const ans = [];
while ( root || stk . length > 0 ) {
if ( root ) {
stk . push ( root );
root = root . left ;
} else {
root = stk . pop ();
ans . push ( root . val );
root = root . right ;
}
}
return ans ;
};
方法三:Morris 实现中序遍历
Morris 遍历无需使用栈,空间复杂度为 $O(1)$。核心思想是:
遍历二叉树节点,
若当前节点 root 的左子树为空,将当前节点值添加至结果列表 ans 中,并将当前节点更新为 root.right
若当前节点 root 的左子树不为空,找到左子树的最右节点 prev(也即是 root 节点在中序遍历下的前驱节点):
若前驱节点 prev 的右子树为空,将前驱节点的右子树指向当前节点 root,并将当前节点更新为 root.left
。
若前驱节点 prev 的右子树不为空,将当前节点值添加至结果列表 ans 中,然后将前驱节点右子树指向空(即解除 prev 与 root 的指向关系),并将当前节点更新为 root.right
。
循环以上步骤,直至二叉树节点为空,遍历结束。
时间复杂度 $O(n)$,空间复杂度 $O(1)$。其中 $n$ 是二叉树的节点数。
Python3 Java C++ Go TypeScript JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def inorderTraversal ( self , root : Optional [ TreeNode ]) -> List [ int ]:
ans = []
while root :
if root . left is None :
ans . append ( root . val )
root = root . right
else :
prev = root . left
while prev . right and prev . right != root :
prev = prev . right
if prev . right is None :
prev . right = root
root = root . left
else :
ans . append ( root . val )
prev . right = None
root = root . right
return ans
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List < Integer > inorderTraversal ( TreeNode root ) {
List < Integer > ans = new ArrayList <> ();
while ( root != null ) {
if ( root . left == null ) {
ans . add ( root . val );
root = root . right ;
} else {
TreeNode prev = root . left ;
while ( prev . right != null && prev . right != root ) {
prev = prev . right ;
}
if ( prev . right == null ) {
prev . right = root ;
root = root . left ;
} else {
ans . add ( root . val );
prev . right = null ;
root = root . right ;
}
}
}
return ans ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
vector < int > inorderTraversal ( TreeNode * root ) {
vector < int > ans ;
while ( root ) {
if ( ! root -> left ) {
ans . push_back ( root -> val );
root = root -> right ;
} else {
TreeNode * prev = root -> left ;
while ( prev -> right && prev -> right != root ) {
prev = prev -> right ;
}
if ( ! prev -> right ) {
prev -> right = root ;
root = root -> left ;
} else {
ans . push_back ( root -> val );
prev -> right = nullptr ;
root = root -> right ;
}
}
}
return ans ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func inorderTraversal ( root * TreeNode ) ( ans [] int ) {
for root != nil {
if root . Left == nil {
ans = append ( ans , root . Val )
root = root . Right
} else {
prev := root . Left
for prev . Right != nil && prev . Right != root {
prev = prev . Right
}
if prev . Right == nil {
prev . Right = root
root = root . Left
} else {
ans = append ( ans , root . Val )
prev . Right = nil
root = root . Right
}
}
}
return
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function inorderTraversal ( root : TreeNode | null ) : number [] {
const ans : number [] = [];
while ( root ) {
if ( ! root . left ) {
ans . push ( root . val );
root = root . right ;
} else {
let prev = root . left ;
while ( prev . right && prev . right != root ) {
prev = prev . right ;
}
if ( ! prev . right ) {
prev . right = root ;
root = root . left ;
} else {
ans . push ( root . val );
prev . right = null ;
root = root . right ;
}
}
}
return ans ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {number[]}
*/
var inorderTraversal = function ( root ) {
const ans = [];
while ( root ) {
if ( ! root . left ) {
ans . push ( root . val );
root = root . right ;
} else {
let prev = root . left ;
while ( prev . right && prev . right != root ) {
prev = prev . right ;
}
if ( ! prev . right ) {
prev . right = root ;
root = root . left ;
} else {
ans . push ( root . val );
prev . right = null ;
root = root . right ;
}
}
}
return ans ;
};