跳转至

938. 二叉搜索树的范围和

题目描述

给定二叉搜索树的根结点 root,返回值位于范围 [low, high] 之间的所有结点的值的和。

 

示例 1:

输入:root = [10,5,15,3,7,null,18], low = 7, high = 15
输出:32

示例 2:

输入:root = [10,5,15,3,7,13,18,1,null,6], low = 6, high = 10
输出:23

 

提示:

  • 树中节点数目在范围 [1, 2 * 104]
  • 1 <= Node.val <= 105
  • 1 <= low <= high <= 105
  • 所有 Node.val 互不相同

解法

方法一:DFS

我们设计一个函数 $dfs(root)$,表示求以 $root$ 为根的子树中,值位于范围 $[low, high]$ 之间的所有结点的值的和。那么答案就是 $dfs(root)$。

函数 $dfs(root)$ 的执行逻辑如下:

  • 如果 $root$ 为空,返回 $0$。
  • 如果 $root$ 的值 $x$ 在范围 $[low, high]$ 之间,那么函数 $dfs(root)$ 的初始答案就是 $x$,否则为 $0$。
  • 如果 $x > low$,说明 $root$ 的左子树中可能有值在范围 $[low, high]$ 之间的结点,所以我们需要递归调用 $dfs(root.left)$,并将结果加到答案上。
  • 如果 $x < high$,说明 $root$ 的右子树中可能有值在范围 $[low, high]$ 之间的结点,所以我们需要递归调用 $dfs(root.right)$,并将结果加到答案上。
  • 最后返回答案。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是二叉搜索树的结点个数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def rangeSumBST(self, root: Optional[TreeNode], low: int, high: int) -> int:
        def dfs(root: Optional[TreeNode]) -> int:
            if root is None:
                return 0
            x = root.val
            ans = x if low <= x <= high else 0
            if x > low:
                ans += dfs(root.left)
            if x < high:
                ans += dfs(root.right)
            return ans

        return dfs(root)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int rangeSumBST(TreeNode root, int low, int high) {
        return dfs(root, low, high);
    }

    private int dfs(TreeNode root, int low, int high) {
        if (root == null) {
            return 0;
        }
        int x = root.val;
        int ans = low <= x && x <= high ? x : 0;
        if (x > low) {
            ans += dfs(root.left, low, high);
        }
        if (x < high) {
            ans += dfs(root.right, low, high);
        }
        return ans;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    int rangeSumBST(TreeNode* root, int low, int high) {
        function<int(TreeNode*)> dfs = [&](TreeNode* root) {
            if (!root) {
                return 0;
            }
            int x = root->val;
            int ans = low <= x && x <= high ? x : 0;
            if (x > low) {
                ans += dfs(root->left);
            }
            if (x < high) {
                ans += dfs(root->right);
            }
            return ans;
        };
        return dfs(root);
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func rangeSumBST(root *TreeNode, low int, high int) int {
    var dfs func(*TreeNode) int
    dfs = func(root *TreeNode) (ans int) {
        if root == nil {
            return 0
        }
        x := root.Val
        if low <= x && x <= high {
            ans += x
        }
        if x > low {
            ans += dfs(root.Left)
        }
        if x < high {
            ans += dfs(root.Right)
        }
        return
    }
    return dfs(root)
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function rangeSumBST(root: TreeNode | null, low: number, high: number): number {
    const dfs = (root: TreeNode | null): number => {
        if (!root) {
            return 0;
        }
        const { val, left, right } = root;
        let ans = low <= val && val <= high ? val : 0;
        if (val > low) {
            ans += dfs(left);
        }
        if (val < high) {
            ans += dfs(right);
        }
        return ans;
    };
    return dfs(root);
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     public int val;
 *     public TreeNode left;
 *     public TreeNode right;
 *     public TreeNode(int val=0, TreeNode left=null, TreeNode right=null) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
public class Solution {
    public int RangeSumBST(TreeNode root, int low, int high) {
        return dfs(root, low, high);
    }

    private int dfs(TreeNode root, int low, int high) {
        if (root == null) {
            return 0;
        }
        int x = root.val;
        int ans = low <= x && x <= high ? x : 0;
        if (x > low) {
            ans += dfs(root.left, low, high);
        }
        if (x < high) {
            ans += dfs(root.right, low, high);
        }
        return ans;
    }
}

评论