题目描述
给你一个 n x n
的 方形 整数数组 matrix
,请你找出并返回通过 matrix
的下降路径 的 最小和 。
下降路径 可以从第一行中的任何元素开始,并从每一行中选择一个元素。在下一行选择的元素和当前行所选元素最多相隔一列(即位于正下方或者沿对角线向左或者向右的第一个元素)。具体来说,位置 (row, col)
的下一个元素应当是 (row + 1, col - 1)
、(row + 1, col)
或者 (row + 1, col + 1)
。
示例 1:
输入:matrix = [[2,1,3],[6,5,4],[7,8,9]]
输出:13
解释:如图所示,为和最小的两条下降路径
示例 2:
输入:matrix = [[-19,57],[-40,-5]]
输出:-59
解释:如图所示,为和最小的下降路径
提示:
n == matrix.length == matrix[i].length
1 <= n <= 100
-100 <= matrix[i][j] <= 100
解法
方法一:动态规划
我们定义 $f[i][j]$ 表示从第一行开始下降,到达第 $i$ 行第 $j$ 列的最小路径和。那么我们可以得到这样的动态规划转移方程:
$$
f[i][j] = matrix[i][j] + \min \left{ \begin{aligned} & f[i - 1][j - 1], & j > 0 \ & f[i - 1][j], & 0 \leq j < n \ & f[i - 1][j + 1], & j + 1 < n \end{aligned} \right.
$$
最终的答案即为 $\min \limits_{0 \leq j < n} f[n - 1][j]$。
时间复杂度 $O(n^2)$,空间复杂度 $O(n^2)$。
我们注意到,状态 $f[i][j]$ 只与上一行的状态有关,因此我们可以使用滚动数组的方式,去掉第一维的状态,将空间复杂度优化到 $O(n)$。
| class Solution:
def minFallingPathSum(self, matrix: List[List[int]]) -> int:
n = len(matrix)
f = [0] * n
for row in matrix:
g = [0] * n
for j, x in enumerate(row):
l, r = max(0, j - 1), min(n, j + 2)
g[j] = min(f[l:r]) + x
f = g
return min(f)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | class Solution {
public int minFallingPathSum(int[][] matrix) {
int n = matrix.length;
var f = new int[n];
for (var row : matrix) {
var g = f.clone();
for (int j = 0; j < n; ++j) {
if (j > 0) {
g[j] = Math.min(g[j], f[j - 1]);
}
if (j + 1 < n) {
g[j] = Math.min(g[j], f[j + 1]);
}
g[j] += row[j];
}
f = g;
}
// return Arrays.stream(f).min().getAsInt();
int ans = 1 << 30;
for (int x : f) {
ans = Math.min(ans, x);
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution {
public:
int minFallingPathSum(vector<vector<int>>& matrix) {
int n = matrix.size();
vector<int> f(n);
for (auto& row : matrix) {
auto g = f;
for (int j = 0; j < n; ++j) {
if (j) {
g[j] = min(g[j], f[j - 1]);
}
if (j + 1 < n) {
g[j] = min(g[j], f[j + 1]);
}
g[j] += row[j];
}
f = move(g);
}
return *min_element(f.begin(), f.end());
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | func minFallingPathSum(matrix [][]int) int {
n := len(matrix)
f := make([]int, n)
for _, row := range matrix {
g := make([]int, n)
copy(g, f)
for j, x := range row {
if j > 0 {
g[j] = min(g[j], f[j-1])
}
if j+1 < n {
g[j] = min(g[j], f[j+1])
}
g[j] += x
}
f = g
}
return slices.Min(f)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | function minFallingPathSum(matrix: number[][]): number {
const n = matrix.length;
const f: number[] = new Array(n).fill(0);
for (const row of matrix) {
const g = f.slice();
for (let j = 0; j < n; ++j) {
if (j > 0) {
g[j] = Math.min(g[j], f[j - 1]);
}
if (j + 1 < n) {
g[j] = Math.min(g[j], f[j + 1]);
}
g[j] += row[j];
}
f.splice(0, n, ...g);
}
return Math.min(...f);
}
|