题目描述
给定一个整数数组 arr
,找到 min(b)
的总和,其中 b
的范围为 arr
的每个(连续)子数组。
由于答案可能很大,因此 返回答案模 10^9 + 7
。
示例 1:
输入:arr = [3,1,2,4]
输出:17
解释:
子数组为 [3],[1],[2],[4],[3,1],[1,2],[2,4],[3,1,2],[1,2,4],[3,1,2,4]。
最小值为 3,1,2,4,1,1,2,1,1,1,和为 17。
示例 2:
输入:arr = [11,81,94,43,3]
输出:444
提示:
1 <= arr.length <= 3 * 104
1 <= arr[i] <= 3 * 104
解法
方法一:单调栈
题目要求的是每个子数组的最小值之和,实际上相当于,对于每个元素 $arr[i]$,求以 $arr[i]$ 为最小值的子数组的个数,然后乘以 $arr[i]$,最后求和。
因此,题目的重点转换为:求以 $arr[i]$ 为最小值的子数组的个数。对于 $arr[i]$,我们找出其左边第一个小于 $arr[i]$ 的位置 $left[i]$,右侧第一个小于等于 $arr[i]$ 的位置 $right[i]$,则以 $arr[i]$ 为最小值的子数组的个数为 $(i - left[i]) \times (right[i] - i)$。
注意,这里为什么要求右侧第一个小于等于 $arr[i]$ 的位置 $right[i]$,而不是小于 $arr[i]$ 的位置呢?这是因为,如果是右侧第一个小于 $arr[i]$ 的位置 $right[i]$,则会导致重复计算。
我们可以举个例子来说明,对于以下数组:
下标为 $3$ 的元素大小为 $2$,左侧第一个小于 $2$ 的元素下标为 $0$,如果我们求右侧第一个小于 $2$ 的元素下标,可以得到下标为 $7$。也即是说,子数组区间为 $(0, 7)$。注意,这里是开区间。
按照同样的方法,我们可以求出下标为 $6$ 的元素的子数组区间,可以发现,其子数组区间也为 $(0, 7)$,也即是说,下标为 $3$ 和下标为 $6$ 的元素的子数组区间是重复的。这样就造成了重复计算。
如果我们求的是右侧第一个小于等于其值的下标,就不会有重复问题,因为下标为 $3$ 的子数组区间变为 $(0, 6)$,下标为 $6$ 的子数组区间为 $(0, 7)$,两者不重复。
回到这道题上,我们只需要遍历数组,对于每个元素 $arr[i]$,利用单调栈求出其左侧第一个小于 $arr[i]$ 的位置 $left[i]$,右侧第一个小于等于 $arr[i]$ 的位置 $right[i]$,则以 $arr[i]$ 为最小值的子数组的个数为 $(i - left[i]) \times (right[i] - i)$,然后乘以 $arr[i]$,最后求和即可。
注意数据的溢出以及取模操作。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为数组 $arr$ 的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution:
def sumSubarrayMins(self, arr: List[int]) -> int:
n = len(arr)
left = [-1] * n
right = [n] * n
stk = []
for i, v in enumerate(arr):
while stk and arr[stk[-1]] >= v:
stk.pop()
if stk:
left[i] = stk[-1]
stk.append(i)
stk = []
for i in range(n - 1, -1, -1):
while stk and arr[stk[-1]] > arr[i]:
stk.pop()
if stk:
right[i] = stk[-1]
stk.append(i)
mod = 10**9 + 7
return sum((i - left[i]) * (right[i] - i) * v for i, v in enumerate(arr)) % mod
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 | class Solution {
public int sumSubarrayMins(int[] arr) {
int n = arr.length;
int[] left = new int[n];
int[] right = new int[n];
Arrays.fill(left, -1);
Arrays.fill(right, n);
Deque<Integer> stk = new ArrayDeque<>();
for (int i = 0; i < n; ++i) {
while (!stk.isEmpty() && arr[stk.peek()] >= arr[i]) {
stk.pop();
}
if (!stk.isEmpty()) {
left[i] = stk.peek();
}
stk.push(i);
}
stk.clear();
for (int i = n - 1; i >= 0; --i) {
while (!stk.isEmpty() && arr[stk.peek()] > arr[i]) {
stk.pop();
}
if (!stk.isEmpty()) {
right[i] = stk.peek();
}
stk.push(i);
}
final int mod = (int) 1e9 + 7;
long ans = 0;
for (int i = 0; i < n; ++i) {
ans += (long) (i - left[i]) * (right[i] - i) % mod * arr[i] % mod;
ans %= mod;
}
return (int) ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 | class Solution {
public:
int sumSubarrayMins(vector<int>& arr) {
int n = arr.size();
vector<int> left(n, -1);
vector<int> right(n, n);
stack<int> stk;
for (int i = 0; i < n; ++i) {
while (!stk.empty() && arr[stk.top()] >= arr[i]) {
stk.pop();
}
if (!stk.empty()) {
left[i] = stk.top();
}
stk.push(i);
}
stk = stack<int>();
for (int i = n - 1; i >= 0; --i) {
while (!stk.empty() && arr[stk.top()] > arr[i]) {
stk.pop();
}
if (!stk.empty()) {
right[i] = stk.top();
}
stk.push(i);
}
long long ans = 0;
const int mod = 1e9 + 7;
for (int i = 0; i < n; ++i) {
ans += 1LL * (i - left[i]) * (right[i] - i) * arr[i] % mod;
ans %= mod;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35 | func sumSubarrayMins(arr []int) (ans int) {
n := len(arr)
left := make([]int, n)
right := make([]int, n)
for i := range left {
left[i] = -1
right[i] = n
}
stk := []int{}
for i, v := range arr {
for len(stk) > 0 && arr[stk[len(stk)-1]] >= v {
stk = stk[:len(stk)-1]
}
if len(stk) > 0 {
left[i] = stk[len(stk)-1]
}
stk = append(stk, i)
}
stk = []int{}
for i := n - 1; i >= 0; i-- {
for len(stk) > 0 && arr[stk[len(stk)-1]] > arr[i] {
stk = stk[:len(stk)-1]
}
if len(stk) > 0 {
right[i] = stk[len(stk)-1]
}
stk = append(stk, i)
}
const mod int = 1e9 + 7
for i, v := range arr {
ans += (i - left[i]) * (right[i] - i) * v % mod
ans %= mod
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | function sumSubarrayMins(arr: number[]): number {
const n: number = arr.length;
const left: number[] = Array(n).fill(-1);
const right: number[] = Array(n).fill(n);
const stk: number[] = [];
for (let i = 0; i < n; ++i) {
while (stk.length > 0 && arr[stk.at(-1)] >= arr[i]) {
stk.pop();
}
if (stk.length > 0) {
left[i] = stk.at(-1);
}
stk.push(i);
}
stk.length = 0;
for (let i = n - 1; ~i; --i) {
while (stk.length > 0 && arr[stk.at(-1)] > arr[i]) {
stk.pop();
}
if (stk.length > 0) {
right[i] = stk.at(-1);
}
stk.push(i);
}
const mod: number = 1e9 + 7;
let ans: number = 0;
for (let i = 0; i < n; ++i) {
ans += ((((i - left[i]) * (right[i] - i)) % mod) * arr[i]) % mod;
ans %= mod;
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | use std::collections::VecDeque;
impl Solution {
pub fn sum_subarray_mins(arr: Vec<i32>) -> i32 {
let n = arr.len();
let mut left = vec![-1; n];
let mut right = vec![n as i32; n];
let mut stk: VecDeque<usize> = VecDeque::new();
for i in 0..n {
while !stk.is_empty() && arr[*stk.back().unwrap()] >= arr[i] {
stk.pop_back();
}
if let Some(&top) = stk.back() {
left[i] = top as i32;
}
stk.push_back(i);
}
stk.clear();
for i in (0..n).rev() {
while !stk.is_empty() && arr[*stk.back().unwrap()] > arr[i] {
stk.pop_back();
}
if let Some(&top) = stk.back() {
right[i] = top as i32;
}
stk.push_back(i);
}
let MOD = 1_000_000_007;
let mut ans: i64 = 0;
for i in 0..n {
ans += ((((right[i] - (i as i32)) * ((i as i32) - left[i])) as i64) * (arr[i] as i64))
% MOD;
ans %= MOD;
}
ans as i32
}
}
|