树
深度优先搜索
二叉树
题目描述
请考虑一棵二叉树上所有的叶子,这些叶子的值按从左到右的顺序排列形成一个 叶值序列 。
举个例子,如上图所示,给定一棵叶值序列为 (6, 7, 4, 9, 8)
的树。
如果有两棵二叉树的叶值序列是相同,那么我们就认为它们是 叶相似 的。
如果给定的两个根结点分别为 root1
和 root2
的树是叶相似的,则返回 true
;否则返回 false
。
示例 1:
输入: root1 = [3,5,1,6,2,9,8,null,null,7,4], root2 = [3,5,1,6,7,4,2,null,null,null,null,null,null,9,8]
输出: true
示例 2:
输入: root1 = [1,2,3], root2 = [1,3,2]
输出: false
提示:
给定的两棵树结点数在 [1, 200]
范围内
给定的两棵树上的值在 [0, 200]
范围内
解法
方法一:DFS
我们可以使用深度优先搜索来遍历两棵树的叶子节点,分别将叶子节点的值存储在两个列表 $l_1$ 和 $l_2$ 中,最后比较两个列表是否相等。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为树的节点数。
Python3 Java C++ Go Rust JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def leafSimilar ( self , root1 : Optional [ TreeNode ], root2 : Optional [ TreeNode ]) -> bool :
def dfs ( root : Optional [ TreeNode ], nums : List [ int ]) -> None :
if root . left == root . right :
nums . append ( root . val )
return
if root . left :
dfs ( root . left , nums )
if root . right :
dfs ( root . right , nums )
l1 , l2 = [], []
dfs ( root1 , l1 )
dfs ( root2 , l2 )
return l1 == l2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public boolean leafSimilar ( TreeNode root1 , TreeNode root2 ) {
List < Integer > l1 = new ArrayList <> ();
List < Integer > l2 = new ArrayList <> ();
dfs ( root1 , l1 );
dfs ( root2 , l2 );
return l1 . equals ( l2 );
}
private void dfs ( TreeNode root , List < Integer > nums ) {
if ( root . left == root . right ) {
nums . add ( root . val );
return ;
}
if ( root . left != null ) {
dfs ( root . left , nums );
}
if ( root . right != null ) {
dfs ( root . right , nums );
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
bool leafSimilar ( TreeNode * root1 , TreeNode * root2 ) {
vector < int > l1 , l2 ;
dfs ( root1 , l1 );
dfs ( root2 , l2 );
return l1 == l2 ;
}
void dfs ( TreeNode * root , vector < int >& nums ) {
if ( root -> left == root -> right ) {
nums . push_back ( root -> val );
return ;
}
if ( root -> left ) {
dfs ( root -> left , nums );
}
if ( root -> right ) {
dfs ( root -> right , nums );
}
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func leafSimilar ( root1 * TreeNode , root2 * TreeNode ) bool {
l1 , l2 := [] int {}, [] int {}
var dfs func ( * TreeNode , * [] int )
dfs = func ( root * TreeNode , nums * [] int ) {
if root . Left == root . Right {
* nums = append ( * nums , root . Val )
return
}
if root . Left != nil {
dfs ( root . Left , nums )
}
if root . Right != nil {
dfs ( root . Right , nums )
}
}
dfs ( root1 , & l1 )
dfs ( root2 , & l2 )
return reflect . DeepEqual ( l1 , l2 )
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
pub fn leaf_similar (
root1 : Option < Rc < RefCell < TreeNode >>> ,
root2 : Option < Rc < RefCell < TreeNode >>> ,
) -> bool {
let mut l1 = Vec :: new ();
let mut l2 = Vec :: new ();
Self :: dfs ( & root1 , & mut l1 );
Self :: dfs ( & root2 , & mut l2 );
l1 == l2
}
fn dfs ( node : & Option < Rc < RefCell < TreeNode >>> , nums : & mut Vec < i32 > ) {
if let Some ( n ) = node {
let n = n . borrow ();
if n . left . is_none () && n . right . is_none () {
nums . push ( n . val );
return ;
}
if n . left . is_some () {
Self :: dfs ( & n . left , nums );
}
if n . right . is_some () {
Self :: dfs ( & n . right , nums );
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 var leafSimilar = function ( root1 , root2 ) {
const l1 = [];
const l2 = [];
const dfs = ( root , nums ) => {
if ( root . left === root . right ) {
nums . push ( root . val );
return ;
}
root . left && dfs ( root . left , nums );
root . right && dfs ( root . right , nums );
};
dfs ( root1 , l1 );
dfs ( root2 , l2 );
return l1 . join ( ',' ) === l2 . join ( ',' );
};