题目描述
汽车从起点出发驶向目的地,该目的地位于出发位置东面 target
英里处。
沿途有加油站,用数组 stations
表示。其中 stations[i] = [positioni, fueli]
表示第 i
个加油站位于出发位置东面 positioni
英里处,并且有 fueli
升汽油。
假设汽车油箱的容量是无限的,其中最初有 startFuel
升燃料。它每行驶 1 英里就会用掉 1 升汽油。当汽车到达加油站时,它可能停下来加油,将所有汽油从加油站转移到汽车中。
为了到达目的地,汽车所必要的最低加油次数是多少?如果无法到达目的地,则返回 -1
。
注意:如果汽车到达加油站时剩余燃料为 0
,它仍然可以在那里加油。如果汽车到达目的地时剩余燃料为 0
,仍然认为它已经到达目的地。
示例 1:
输入:target = 1, startFuel = 1, stations = []
输出:0
解释:可以在不加油的情况下到达目的地。
示例 2:
输入:target = 100, startFuel = 1, stations = [[10,100]]
输出:-1
解释:无法抵达目的地,甚至无法到达第一个加油站。
示例 3:
输入:target = 100, startFuel = 10, stations = [[10,60],[20,30],[30,30],[60,40]]
输出:2
解释:
出发时有 10 升燃料。
开车来到距起点 10 英里处的加油站,消耗 10 升燃料。将汽油从 0 升加到 60 升。
然后,从 10 英里处的加油站开到 60 英里处的加油站(消耗 50 升燃料),
并将汽油从 10 升加到 50 升。然后开车抵达目的地。
沿途在两个加油站停靠,所以返回 2 。
提示:
1 <= target, startFuel <= 109
0 <= stations.length <= 500
1 <= positioni < positioni+1 < target
1 <= fueli < 109
解法
方法一:贪心 + 优先队列(大根堆)
我们可以利用优先队列(大根堆) $\textit{pq}$ 记录所有已经到达过的加油站的加油量,每次当油量不足时,贪心地取出最大加油量,即 $\textit{pq}$ 的堆顶元素,并累计加油次数 $\textit{ans}$。如果 $\textit{pq}$ 为空并且当前油量仍然不足,说明无法到达目的地,返回 $-1$。
时间复杂度 $O(n \times \log n)$,空间复杂度 $O(n)$。其中 $n$ 表示加油站的数量。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution:
def minRefuelStops(
self, target: int, startFuel: int, stations: List[List[int]]
) -> int:
pq = []
ans = pre = 0
stations.append([target, 0])
for pos, fuel in stations:
dist = pos - pre
startFuel -= dist
while startFuel < 0 and pq:
startFuel -= heappop(pq)
ans += 1
if startFuel < 0:
return -1
heappush(pq, -fuel)
pre = pos
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | class Solution {
public int minRefuelStops(int target, int startFuel, int[][] stations) {
PriorityQueue<Integer> pq = new PriorityQueue<>((a, b) -> b - a);
int n = stations.length;
int ans = 0, pre = 0;
for (int i = 0; i <= n; ++i) {
int pos = i < n ? stations[i][0] : target;
int dist = pos - pre;
startFuel -= dist;
while (startFuel < 0 && !pq.isEmpty()) {
startFuel += pq.poll();
++ans;
}
if (startFuel < 0) {
return -1;
}
if (i < n) {
pq.offer(stations[i][1]);
pre = stations[i][0];
}
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | class Solution {
public:
int minRefuelStops(int target, int startFuel, vector<vector<int>>& stations) {
priority_queue<int> pq;
stations.push_back({target, 0});
int ans = 0, pre = 0;
for (const auto& station : stations) {
int pos = station[0], fuel = station[1];
int dist = pos - pre;
startFuel -= dist;
while (startFuel < 0 && !pq.empty()) {
startFuel += pq.top();
pq.pop();
++ans;
}
if (startFuel < 0) {
return -1;
}
pq.push(fuel);
pre = pos;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | func minRefuelStops(target int, startFuel int, stations [][]int) int {
pq := &hp{}
ans, pre := 0, 0
stations = append(stations, []int{target, 0})
for _, station := range stations {
pos, fuel := station[0], station[1]
dist := pos - pre
startFuel -= dist
for startFuel < 0 && pq.Len() > 0 {
startFuel += heap.Pop(pq).(int)
ans++
}
if startFuel < 0 {
return -1
}
heap.Push(pq, fuel)
pre = pos
}
return ans
}
type hp struct{ sort.IntSlice }
func (h hp) Less(i, j int) bool { return h.IntSlice[i] > h.IntSlice[j] }
func (h *hp) Push(v any) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() any {
a := h.IntSlice
v := a[len(a)-1]
h.IntSlice = a[:len(a)-1]
return v
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | function minRefuelStops(target: number, startFuel: number, stations: number[][]): number {
const pq = new MaxPriorityQueue();
let [ans, pre] = [0, 0];
stations.push([target, 0]);
for (const [pos, fuel] of stations) {
const dist = pos - pre;
startFuel -= dist;
while (startFuel < 0 && !pq.isEmpty()) {
startFuel += pq.dequeue().element;
ans++;
}
if (startFuel < 0) {
return -1;
}
pq.enqueue(fuel);
pre = pos;
}
return ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | use std::collections::BinaryHeap;
impl Solution {
pub fn min_refuel_stops(target: i32, mut start_fuel: i32, mut stations: Vec<Vec<i32>>) -> i32 {
let mut pq = BinaryHeap::new();
let mut ans = 0;
let mut pre = 0;
stations.push(vec![target, 0]);
for station in stations {
let pos = station[0];
let fuel = station[1];
let dist = pos - pre;
start_fuel -= dist;
while start_fuel < 0 && !pq.is_empty() {
start_fuel += pq.pop().unwrap();
ans += 1;
}
if start_fuel < 0 {
return -1;
}
pq.push(fuel);
pre = pos;
}
ans
}
}
|