题目描述
使用下面描述的算法可以扰乱字符串 s
得到字符串 t
:
- 如果字符串的长度为 1 ,算法停止
- 如果字符串的长度 > 1 ,执行下述步骤:
- 在一个随机下标处将字符串分割成两个非空的子字符串。即,如果已知字符串
s
,则可以将其分成两个子字符串 x
和 y
,且满足 s = x + y
。
- 随机 决定是要「交换两个子字符串」还是要「保持这两个子字符串的顺序不变」。即,在执行这一步骤之后,
s
可能是 s = x + y
或者 s = y + x
。
- 在
x
和 y
这两个子字符串上继续从步骤 1 开始递归执行此算法。
给你两个 长度相等 的字符串 s1
和 s2
,判断 s2
是否是 s1
的扰乱字符串。如果是,返回 true
;否则,返回 false
。
示例 1:
输入:s1 = "great", s2 = "rgeat"
输出:true
解释:s1 上可能发生的一种情形是:
"great" --> "gr/eat" // 在一个随机下标处分割得到两个子字符串
"gr/eat" --> "gr/eat" // 随机决定:「保持这两个子字符串的顺序不变」
"gr/eat" --> "g/r / e/at" // 在子字符串上递归执行此算法。两个子字符串分别在随机下标处进行一轮分割
"g/r / e/at" --> "r/g / e/at" // 随机决定:第一组「交换两个子字符串」,第二组「保持这两个子字符串的顺序不变」
"r/g / e/at" --> "r/g / e/ a/t" // 继续递归执行此算法,将 "at" 分割得到 "a/t"
"r/g / e/ a/t" --> "r/g / e/ a/t" // 随机决定:「保持这两个子字符串的顺序不变」
算法终止,结果字符串和 s2 相同,都是 "rgeat"
这是一种能够扰乱 s1 得到 s2 的情形,可以认为 s2 是 s1 的扰乱字符串,返回 true
示例 2:
输入:s1 = "abcde", s2 = "caebd"
输出:false
示例 3:
输入:s1 = "a", s2 = "a"
输出:true
提示:
s1.length == s2.length
1 <= s1.length <= 30
s1
和 s2
由小写英文字母组成
解法
方法一:记忆化搜索
我们设计一个函数 $dfs(i, j, k)$,表示字符串 $s_1$ 从 $i$ 开始长度为 $k$ 的子串是否能变换为字符串 $s_2$ 从 $j$ 开始长度为 $k$ 的子串。如果能变换,返回 true
,否则返回 false
。那么答案就是 $dfs(0, 0, n)$,其中 $n$ 是字符串的长度。
函数 $dfs(i, j, k)$ 的计算方式如下:
- 如果 $k=1$,那么只需要判断 $s_1[i]$ 和 $s_2[j]$ 是否相等,如果相等返回
true
,否则返回 false
;
- 如果 $k \gt 1$,我们枚举分割部分的长度 $h$,那么有两种情况:如果不交换分割的两个子字符串,那么就是 $dfs(i, j, h) \land dfs(i+h, j+h, k-h)$;如果交换了分割的两个子字符串,那么就是 $dfs(i, j+k-h, h) \land dfs(i+h, j, k-h)$。如果两种情况中有一种情况成立,那么就说明 $dfs(i, j, k)$ 成立,返回
true
,否则返回 false
。
最后,我们返回 $dfs(0, 0, n)$。
为了避免重复计算,我们可以使用记忆化搜索的方式。
时间复杂度 $O(n^4)$,空间复杂度 $O(n^3)$。其中 $n$ 是字符串的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | class Solution:
def isScramble(self, s1: str, s2: str) -> bool:
@cache
def dfs(i: int, j: int, k: int) -> bool:
if k == 1:
return s1[i] == s2[j]
for h in range(1, k):
if dfs(i, j, h) and dfs(i + h, j + h, k - h):
return True
if dfs(i + h, j, k - h) and dfs(i, j + k - h, h):
return True
return False
return dfs(0, 0, len(s1))
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | class Solution {
private Boolean[][][] f;
private String s1;
private String s2;
public boolean isScramble(String s1, String s2) {
int n = s1.length();
this.s1 = s1;
this.s2 = s2;
f = new Boolean[n][n][n + 1];
return dfs(0, 0, n);
}
private boolean dfs(int i, int j, int k) {
if (f[i][j][k] != null) {
return f[i][j][k];
}
if (k == 1) {
return s1.charAt(i) == s2.charAt(j);
}
for (int h = 1; h < k; ++h) {
if (dfs(i, j, h) && dfs(i + h, j + h, k - h)) {
return f[i][j][k] = true;
}
if (dfs(i + h, j, k - h) && dfs(i, j + k - h, h)) {
return f[i][j][k] = true;
}
}
return f[i][j][k] = false;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | class Solution {
public:
bool isScramble(string s1, string s2) {
int n = s1.size();
int f[n][n][n + 1];
memset(f, -1, sizeof(f));
function<bool(int, int, int)> dfs = [&](int i, int j, int k) -> int {
if (f[i][j][k] != -1) {
return f[i][j][k] == 1;
}
if (k == 1) {
return s1[i] == s2[j];
}
for (int h = 1; h < k; ++h) {
if (dfs(i, j, h) && dfs(i + h, j + h, k - h)) {
return f[i][j][k] = true;
}
if (dfs(i + h, j, k - h) && dfs(i, j + k - h, h)) {
return f[i][j][k] = true;
}
}
return f[i][j][k] = false;
};
return dfs(0, 0, n);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | func isScramble(s1 string, s2 string) bool {
n := len(s1)
f := make([][][]int, n)
for i := range f {
f[i] = make([][]int, n)
for j := range f[i] {
f[i][j] = make([]int, n+1)
}
}
var dfs func(i, j, k int) bool
dfs = func(i, j, k int) bool {
if k == 1 {
return s1[i] == s2[j]
}
if f[i][j][k] != 0 {
return f[i][j][k] == 1
}
f[i][j][k] = 2
for h := 1; h < k; h++ {
if (dfs(i, j, h) && dfs(i+h, j+h, k-h)) || (dfs(i+h, j, k-h) && dfs(i, j+k-h, h)) {
f[i][j][k] = 1
return true
}
}
return false
}
return dfs(0, 0, n)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | function isScramble(s1: string, s2: string): boolean {
const n = s1.length;
const f = new Array(n)
.fill(0)
.map(() => new Array(n).fill(0).map(() => new Array(n + 1).fill(-1)));
const dfs = (i: number, j: number, k: number): boolean => {
if (f[i][j][k] !== -1) {
return f[i][j][k] === 1;
}
if (k === 1) {
return s1[i] === s2[j];
}
for (let h = 1; h < k; ++h) {
if (dfs(i, j, h) && dfs(i + h, j + h, k - h)) {
return Boolean((f[i][j][k] = 1));
}
if (dfs(i + h, j, k - h) && dfs(i, j + k - h, h)) {
return Boolean((f[i][j][k] = 1));
}
}
return Boolean((f[i][j][k] = 0));
};
return dfs(0, 0, n);
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 | public class Solution {
private string s1;
private string s2;
private int[,,] f;
public bool IsScramble(string s1, string s2) {
int n = s1.Length;
this.s1 = s1;
this.s2 = s2;
f = new int[n, n, n + 1];
return dfs(0, 0, n);
}
private bool dfs(int i, int j, int k) {
if (f[i, j, k] != 0) {
return f[i, j, k] == 1;
}
if (k == 1) {
return s1[i] == s2[j];
}
for (int h = 1; h < k; ++h) {
if (dfs(i, j, h) && dfs(i + h, j + h, k - h)) {
f[i, j, k] = 1;
return true;
}
if (dfs(i, j + k - h, h) && dfs(i + h, j, k - h)) {
f[i, j, k] = 1;
return true;
}
}
f[i, j, k] = -1;
return false;
}
}
|
方法二:动态规划(区间 DP)
我们定义 $f[i][j][k]$ 表示字符串 $s_1$ 从 $i$ 开始长度为 $k$ 的子串是否能变换为字符串 $s_2$ 从 $j$ 开始长度为 $k$ 的子串。那么答案就是 $f[0][0][n]$,其中 $n$ 是字符串的长度。
对于长度为 $1$ 的子串,如果 $s_1[i] = s_2[j]$,那么 $f[i][j][1] = true$,否则 $f[i][j][1] = false$。
接下来,我们从小到大枚举子串的长度 $k$,从 $0$ 开始枚举 $i$,从 $0$ 开始枚举 $j$,如果 $f[i][j][h] \land f[i + h][j + h][k - h]$ 或者 $f[i][j + k - h][h] \land f[i + h][j][k - h]$ 成立,那么 $f[i][j][k]$ 也成立。
最后,我们返回 $f[0][0][n]$。
时间复杂度 $O(n^4)$,空间复杂度 $O(n^3)$。其中 $n$ 是字符串的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | class Solution:
def isScramble(self, s1: str, s2: str) -> bool:
n = len(s1)
f = [[[False] * (n + 1) for _ in range(n)] for _ in range(n)]
for i in range(n):
for j in range(n):
f[i][j][1] = s1[i] == s2[j]
for k in range(2, n + 1):
for i in range(n - k + 1):
for j in range(n - k + 1):
for h in range(1, k):
if f[i][j][h] and f[i + h][j + h][k - h]:
f[i][j][k] = True
break
if f[i + h][j][k - h] and f[i][j + k - h][h]:
f[i][j][k] = True
break
return f[0][0][n]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | class Solution {
public boolean isScramble(String s1, String s2) {
int n = s1.length();
boolean[][][] f = new boolean[n][n][n + 1];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
f[i][j][1] = s1.charAt(i) == s2.charAt(j);
}
}
for (int k = 2; k <= n; ++k) {
for (int i = 0; i <= n - k; ++i) {
for (int j = 0; j <= n - k; ++j) {
for (int h = 1; h < k; ++h) {
if (f[i][j][h] && f[i + h][j + h][k - h]) {
f[i][j][k] = true;
break;
}
if (f[i + h][j][k - h] && f[i][j + k - h][h]) {
f[i][j][k] = true;
break;
}
}
}
}
}
return f[0][0][n];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public:
bool isScramble(string s1, string s2) {
int n = s1.length();
bool f[n][n][n + 1];
memset(f, false, sizeof(f));
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
f[i][j][1] = s1[i] == s2[j];
}
}
for (int k = 2; k <= n; ++k) {
for (int i = 0; i <= n - k; ++i) {
for (int j = 0; j <= n - k; ++j) {
for (int h = 1; h < k; ++h) {
if () {
f[i][j][k] = true;
break;
}
if (f[i + h][j][k - h] && f[i][j + k - h][h]) {
f[i][j][k] = true;
break;
}
}
}
}
}
return f[0][0][n];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | func isScramble(s1 string, s2 string) bool {
n := len(s1)
f := make([][][]bool, n)
for i := range f {
f[i] = make([][]bool, n)
for j := 0; j < n; j++ {
f[i][j] = make([]bool, n+1)
f[i][j][1] = s1[i] == s2[j]
}
}
for k := 2; k <= n; k++ {
for i := 0; i <= n-k; i++ {
for j := 0; j <= n-k; j++ {
for h := 1; h < k; h++ {
if (f[i][j][h] && f[i+h][j+h][k-h]) || (f[i+h][j][k-h] && f[i][j+k-h][h]) {
f[i][j][k] = true
break
}
}
}
}
}
return f[0][0][n]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | function isScramble(s1: string, s2: string): boolean {
const n = s1.length;
const f = new Array(n)
.fill(0)
.map(() => new Array(n).fill(0).map(() => new Array(n + 1).fill(false)));
for (let i = 0; i < n; ++i) {
for (let j = 0; j < n; ++j) {
f[i][j][1] = s1[i] === s2[j];
}
}
for (let k = 2; k <= n; ++k) {
for (let i = 0; i <= n - k; ++i) {
for (let j = 0; j <= n - k; ++j) {
for (let h = 1; h < k; ++h) {
if (f[i][j][h] && f[i + h][j + h][k - h]) {
f[i][j][k] = true;
break;
}
if (f[i + h][j][k - h] && f[i][j + k - h][h]) {
f[i][j][k] = true;
break;
}
}
}
}
}
return f[0][0][n];
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | public class Solution {
public bool IsScramble(string s1, string s2) {
int n = s1.Length;
bool[,,] f = new bool[n, n, n + 1];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++ j) {
f[i, j, 1] = s1[i] == s2[j];
}
}
for (int k = 2; k <= n; ++k) {
for (int i = 0; i <= n - k; ++i) {
for (int j = 0; j <= n - k; ++j) {
for (int h = 1; h < k; ++h) {
if (f[i, j, h] && f[i + h, j + h, k - h]) {
f[i, j, k] = true;
break;
}
if (f[i, j + k - h, h] && f[i + h, j, k - h]) {
f[i, j, k] = true;
break;
}
}
}
}
}
return f[0, 0, n];
}
}
|