题目描述
给你一个整数数组 nums
和一个整数 k
,找出 nums
中和至少为 k
的 最短非空子数组 ,并返回该子数组的长度。如果不存在这样的 子数组 ,返回 -1
。
子数组 是数组中 连续 的一部分。
示例 1:
输入:nums = [1], k = 1
输出:1
示例 2:
输入:nums = [1,2], k = 4
输出:-1
示例 3:
输入:nums = [2,-1,2], k = 3
输出:3
提示:
1 <= nums.length <= 105
-105 <= nums[i] <= 105
1 <= k <= 109
解法
方法一:前缀和 + 单调队列
题目要求找到一个最短的子数组,使得子数组的和大于等于 $k$。不难想到,可以使用前缀和快速计算子数组的和。
我们用一个长度为 $n+1$ 的数组 $s[i]$ 表示数组 $nums$ 前 $i$ 个元素的和。另外,我们需要维护一个严格单调递增的队列 $q$,队列中存储的是前缀和数组 $s[i]$ 的下标。注意,这里的单调递增是指下标对应的前缀和的大小,而不是下标的大小。
为什么存的是下标呢?这是为了方便计算子数组的长度。那为什么队列严格单调递增?我们可以用反证法来说明。
假设队列元素非严格单调递增,也即是说,存在下标 $i$ 和 $j$,满足 $i < j$,且 $s[i] \geq s[j]$。
当遍历到下标 $k$,其中 $i \lt j \lt k \leq n$,此时 $s[k]-s[j] \geq s[k]-s[i]$,且 $nums[j..k-1]$ 的长度小于 $nums[i..k-1]$ 的长度。由于下标 $j$ 的存在,子数组 $nums[i..k-1]$ 一定不是最优解,队列中的下标 $i$ 是不必要的,需要将其移除。因此,队列中的元素一定严格单调递增。
回到这道题目上,我们遍历前缀和数组 $s$,对于遍历到的下标 $i$,如果 $s[i] - s[q.front] \geq k$,说明当前遇到了一个可行解,我们可以更新答案。此时,我们需要将队首元素出队,直到队列为空或者 $s[i] - s[q.front] \lt k$ 为止。
如果此时队列不为空,为了维持队列的严格单调递增,我们还需要判断队尾元素是否需要出队,如果 $s[q.back] \geq s[i]$,则需要循环将队尾元素出队,直到队列为空或者 $s[q.back] \lt s[i]$ 为止。然后,我们将下标 $i$ 入队。
遍历结束,如果我们没有找到可行解,那么返回 $-1$。否则,返回答案。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 是数组 $nums$ 的长度。
1
2
3
4
5
6
7
8
9
10
11
12 | class Solution:
def shortestSubarray(self, nums: List[int], k: int) -> int:
s = list(accumulate(nums, initial=0))
q = deque()
ans = inf
for i, v in enumerate(s):
while q and v - s[q[0]] >= k:
ans = min(ans, i - q.popleft())
while q and s[q[-1]] >= v:
q.pop()
q.append(i)
return -1 if ans == inf else ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution {
public int shortestSubarray(int[] nums, int k) {
int n = nums.length;
long[] s = new long[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
Deque<Integer> q = new ArrayDeque<>();
int ans = n + 1;
for (int i = 0; i <= n; ++i) {
while (!q.isEmpty() && s[i] - s[q.peek()] >= k) {
ans = Math.min(ans, i - q.poll());
}
while (!q.isEmpty() && s[q.peekLast()] >= s[i]) {
q.pollLast();
}
q.offer(i);
}
return ans > n ? -1 : ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public:
int shortestSubarray(vector<int>& nums, int k) {
int n = nums.size();
vector<long> s(n + 1);
for (int i = 0; i < n; ++i) s[i + 1] = s[i] + nums[i];
deque<int> q;
int ans = n + 1;
for (int i = 0; i <= n; ++i) {
while (!q.empty() && s[i] - s[q.front()] >= k) {
ans = min(ans, i - q.front());
q.pop_front();
}
while (!q.empty() && s[q.back()] >= s[i]) q.pop_back();
q.push_back(i);
}
return ans > n ? -1 : ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | func shortestSubarray(nums []int, k int) int {
n := len(nums)
s := make([]int, n+1)
for i, x := range nums {
s[i+1] = s[i] + x
}
q := []int{}
ans := n + 1
for i, v := range s {
for len(q) > 0 && v-s[q[0]] >= k {
ans = min(ans, i-q[0])
q = q[1:]
}
for len(q) > 0 && s[q[len(q)-1]] >= v {
q = q[:len(q)-1]
}
q = append(q, i)
}
if ans > n {
return -1
}
return ans
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | function shortestSubarray(nums: number[], k: number): number {
const [n, MAX] = [nums.length, Number.POSITIVE_INFINITY];
const s = Array(n + 1).fill(0);
const q: number[] = [];
let ans = MAX;
for (let i = 0; i < n; i++) {
s[i + 1] = s[i] + nums[i];
}
for (let i = 0; i < n + 1; i++) {
while (q.length && s[i] - s[q[0]] >= k) {
ans = Math.min(ans, i - q.shift()!);
}
while (q.length && s[i] <= s[q.at(-1)!]) {
q.pop();
}
q.push(i);
}
return ans === MAX ? -1 : ans;
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | function shortestSubarray(nums, k) {
const [n, MAX] = [nums.length, Number.POSITIVE_INFINITY];
const s = Array(n + 1).fill(0);
const q = [];
let ans = MAX;
for (let i = 0; i < n; i++) {
s[i + 1] = s[i] + nums[i];
}
for (let i = 0; i < n + 1; i++) {
while (q.length && s[i] - s[q[0]] >= k) {
ans = Math.min(ans, i - q.shift());
}
while (q.length && s[i] <= s[q.at(-1)]) {
q.pop();
}
q.push(i);
}
return ans === MAX ? -1 : ans;
}
|