题目描述
你有 n
个工作和 m
个工人。给定三个数组: difficulty
, profit
和 worker
,其中:
difficulty[i]
表示第 i
个工作的难度,profit[i]
表示第 i
个工作的收益。
worker[i]
是第 i
个工人的能力,即该工人只能完成难度小于等于 worker[i]
的工作。
每个工人 最多 只能安排 一个 工作,但是一个工作可以 完成多次 。
- 举个例子,如果 3 个工人都尝试完成一份报酬为
$1
的同样工作,那么总收益为 $3
。如果一个工人不能完成任何工作,他的收益为 $0
。
返回 在把工人分配到工作岗位后,我们所能获得的最大利润 。
示例 1:
输入: difficulty = [2,4,6,8,10], profit = [10,20,30,40,50], worker = [4,5,6,7]
输出: 100
解释: 工人被分配的工作难度是 [4,4,6,6] ,分别获得 [20,20,30,30] 的收益。
示例 2:
输入: difficulty = [85,47,57], profit = [24,66,99], worker = [40,25,25]
输出: 0
提示:
n == difficulty.length
n == profit.length
m == worker.length
1 <= n, m <= 104
1 <= difficulty[i], profit[i], worker[i] <= 105
解法
方法一:排序 + 双指针
我们可以将工作按照能力升序排列,然后将工作按照难度升序排列。
然后我们遍历工人,对于每个工人,我们找出他能完成的工作中收益最大的那个,然后将这个收益加到答案中。
时间复杂度 $O(n \times \log n + m \times \log m)$,空间复杂度 $O(n)$。其中 $n$ 和 $m$ 分别是数组 profit
和 worker
的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13 | class Solution:
def maxProfitAssignment(
self, difficulty: List[int], profit: List[int], worker: List[int]
) -> int:
worker.sort()
jobs = sorted(zip(difficulty, profit))
ans = mx = i = 0
for w in worker:
while i < len(jobs) and jobs[i][0] <= w:
mx = max(mx, jobs[i][1])
i += 1
ans += mx
return ans
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public int maxProfitAssignment(int[] difficulty, int[] profit, int[] worker) {
Arrays.sort(worker);
int n = profit.length;
int[][] jobs = new int[n][0];
for (int i = 0; i < n; ++i) {
jobs[i] = new int[] {difficulty[i], profit[i]};
}
Arrays.sort(jobs, (a, b) -> a[0] - b[0]);
int ans = 0, mx = 0, i = 0;
for (int w : worker) {
while (i < n && jobs[i][0] <= w) {
mx = Math.max(mx, jobs[i++][1]);
}
ans += mx;
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | class Solution {
public:
int maxProfitAssignment(vector<int>& difficulty, vector<int>& profit, vector<int>& worker) {
sort(worker.begin(), worker.end());
int n = profit.size();
vector<pair<int, int>> jobs;
for (int i = 0; i < n; ++i) {
jobs.emplace_back(difficulty[i], profit[i]);
}
sort(jobs.begin(), jobs.end());
int ans = 0, mx = 0, i = 0;
for (int w : worker) {
while (i < n && jobs[i].first <= w) {
mx = max(mx, jobs[i++].second);
}
ans += mx;
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | func maxProfitAssignment(difficulty []int, profit []int, worker []int) (ans int) {
sort.Ints(worker)
n := len(profit)
jobs := make([][2]int, n)
for i, p := range profit {
jobs[i] = [2]int{difficulty[i], p}
}
sort.Slice(jobs, func(i, j int) bool { return jobs[i][0] < jobs[j][0] })
mx, i := 0, 0
for _, w := range worker {
for ; i < n && jobs[i][0] <= w; i++ {
mx = max(mx, jobs[i][1])
}
ans += mx
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | function maxProfitAssignment(difficulty: number[], profit: number[], worker: number[]): number {
const n = profit.length;
worker.sort((a, b) => a - b);
const jobs = Array.from({ length: n }, (_, i) => [difficulty[i], profit[i]]);
jobs.sort((a, b) => a[0] - b[0]);
let [ans, mx, i] = [0, 0, 0];
for (const w of worker) {
while (i < n && jobs[i][0] <= w) {
mx = Math.max(mx, jobs[i++][1]);
}
ans += mx;
}
return ans;
}
|
方法二:动态规划
我们不妨记 $m = \max(\textit{difficulty})$,定义一个长度为 $m + 1$ 的数组 $f$,其中 $f[i]$ 表示难度小于等于 $i$ 的工作中收益的最大值,初始时 $f[i] = 0$。
然后我们遍历工作,对于每个工作 $(d, p)$,我们更新 $f[d] = \max(f[d], p)$。
接下来,我们从 $1$ 到 $m$ 遍历,对于每个 $i$,我们更新 $f[i] = \max(f[i], f[i - 1])$。
最后,我们遍历工人,对于每个工人 $w$,我们将 $f[\min(w, m)]$ 加到答案中。
时间复杂度 $O(n + M)$,空间复杂度 $O(M)$。其中 $n$ 是数组 profit
的长度,而 $M$ 是数组 difficulty
中的最大值。
| class Solution:
def maxProfitAssignment(
self, difficulty: List[int], profit: List[int], worker: List[int]
) -> int:
m = max(difficulty)
f = [0] * (m + 1)
for d, p in zip(difficulty, profit):
f[d] = max(f[d], p)
for i in range(1, m + 1):
f[i] = max(f[i], f[i - 1])
return sum(f[min(w, m)] for w in worker)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public int maxProfitAssignment(int[] difficulty, int[] profit, int[] worker) {
int m = Arrays.stream(difficulty).max().getAsInt();
int[] f = new int[m + 1];
int n = profit.length;
for (int i = 0; i < n; ++i) {
int d = difficulty[i];
f[d] = Math.max(f[d], profit[i]);
}
for (int i = 1; i <= m; ++i) {
f[i] = Math.max(f[i], f[i - 1]);
}
int ans = 0;
for (int w : worker) {
ans += f[Math.min(w, m)];
}
return ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | class Solution {
public:
int maxProfitAssignment(vector<int>& difficulty, vector<int>& profit, vector<int>& worker) {
int m = *max_element(begin(difficulty), end(difficulty));
int f[m + 1];
memset(f, 0, sizeof(f));
int n = profit.size();
for (int i = 0; i < n; ++i) {
int d = difficulty[i];
f[d] = max(f[d], profit[i]);
}
for (int i = 1; i <= m; ++i) {
f[i] = max(f[i], f[i - 1]);
}
int ans = 0;
for (int w : worker) {
ans += f[min(w, m)];
}
return ans;
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14 | func maxProfitAssignment(difficulty []int, profit []int, worker []int) (ans int) {
m := slices.Max(difficulty)
f := make([]int, m+1)
for i, d := range difficulty {
f[d] = max(f[d], profit[i])
}
for i := 1; i <= m; i++ {
f[i] = max(f[i], f[i-1])
}
for _, w := range worker {
ans += f[min(w, m)]
}
return
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13 | function maxProfitAssignment(difficulty: number[], profit: number[], worker: number[]): number {
const m = Math.max(...difficulty);
const f = Array(m + 1).fill(0);
const n = profit.length;
for (let i = 0; i < n; ++i) {
const d = difficulty[i];
f[d] = Math.max(f[d], profit[i]);
}
for (let i = 1; i <= m; ++i) {
f[i] = Math.max(f[i], f[i - 1]);
}
return worker.reduce((acc, w) => acc + f[Math.min(w, m)], 0);
}
|