树
深度优先搜索
二叉树
题目描述
给你二叉树的根结点 root
,此外树的每个结点的值要么是 0
,要么是 1
。
返回移除了所有不包含 1
的子树的原二叉树。
节点 node
的子树为 node
本身加上所有 node
的后代。
示例 1:
输入: root = [1,null,0,0,1]
输出: [1,null,0,null,1]
解释:
只有红色节点满足条件“所有不包含 1 的子树”。 右图为返回的答案。
示例 2:
输入: root = [1,0,1,0,0,0,1]
输出: [1,null,1,null,1]
示例 3:
输入: root = [1,1,0,1,1,0,1,0]
输出: [1,1,0,1,1,null,1]
提示:
树中节点的数目在范围 [1, 200]
内
Node.val
为 0
或 1
解法
方法一:递归
我们首先判断当前节点是否为空,如果为空则直接返回空节点。
否则,我们递归地对左右子树进行剪枝,并将剪枝后的左右子树重新赋值给当前节点的左右子节点。然后判断当前节点的值是否为 0 且左右子节点都为空,如果是则返回空节点,否则返回当前节点。
时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。
Python3 Java C++ Go TypeScript Rust JavaScript
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 # Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution :
def pruneTree ( self , root : Optional [ TreeNode ]) -> Optional [ TreeNode ]:
if root is None :
return root
root . left = self . pruneTree ( root . left )
root . right = self . pruneTree ( root . right )
if root . val == 0 and root . left == root . right :
return None
return root
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public TreeNode pruneTree ( TreeNode root ) {
if ( root == null ) {
return null ;
}
root . left = pruneTree ( root . left );
root . right = pruneTree ( root . right );
if ( root . val == 0 && root . left == null && root . right == null ) {
return null ;
}
return root ;
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 /**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
class Solution {
public :
TreeNode * pruneTree ( TreeNode * root ) {
if ( ! root ) {
return root ;
}
root -> left = pruneTree ( root -> left );
root -> right = pruneTree ( root -> right );
if ( root -> val == 0 && root -> left == root -> right ) {
return nullptr ;
}
return root ;
}
};
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 /**
* Definition for a binary tree node.
* type TreeNode struct {
* Val int
* Left *TreeNode
* Right *TreeNode
* }
*/
func pruneTree ( root * TreeNode ) * TreeNode {
if root == nil {
return nil
}
root . Left = pruneTree ( root . Left )
root . Right = pruneTree ( root . Right )
if root . Val == 0 && root . Left == nil && root . Right == nil {
return nil
}
return root
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 /**
* Definition for a binary tree node.
* class TreeNode {
* val: number
* left: TreeNode | null
* right: TreeNode | null
* constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
* }
*/
function pruneTree ( root : TreeNode | null ) : TreeNode | null {
if ( ! root ) {
return root ;
}
root . left = pruneTree ( root . left );
root . right = pruneTree ( root . right );
if ( root . val === 0 && root . left === root . right ) {
return null ;
}
return root ;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38 // Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
// pub val: i32,
// pub left: Option<Rc<RefCell<TreeNode>>>,
// pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
// #[inline]
// pub fn new(val: i32) -> Self {
// TreeNode {
// val,
// left: None,
// right: None
// }
// }
// }
use std :: cell :: RefCell ;
use std :: rc :: Rc ;
impl Solution {
pub fn prune_tree ( root : Option < Rc < RefCell < TreeNode >>> ) -> Option < Rc < RefCell < TreeNode >>> {
if root . is_none () {
return None ;
}
let root = root . unwrap ();
let left = Self :: prune_tree ( root . borrow_mut (). left . take ());
let right = Self :: prune_tree ( root . borrow_mut (). right . take ());
if root . borrow (). val == 0 && left . is_none () && right . is_none () {
return None ;
}
root . borrow_mut (). left = left ;
root . borrow_mut (). right = right ;
Some ( root )
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 /**
* Definition for a binary tree node.
* function TreeNode(val, left, right) {
* this.val = (val===undefined ? 0 : val)
* this.left = (left===undefined ? null : left)
* this.right = (right===undefined ? null : right)
* }
*/
/**
* @param {TreeNode} root
* @return {TreeNode}
*/
var pruneTree = function ( root ) {
if ( ! root ) {
return root ;
}
root . left = pruneTree ( root . left );
root . right = pruneTree ( root . right );
if ( root . val === 0 && root . left === root . right ) {
return null ;
}
return root ;
};