跳转至

814. 二叉树剪枝

题目描述

给你二叉树的根结点 root ,此外树的每个结点的值要么是 0 ,要么是 1

返回移除了所有不包含 1 的子树的原二叉树。

节点 node 的子树为 node 本身加上所有 node 的后代。

 

示例 1:

输入:root = [1,null,0,0,1]
输出:[1,null,0,null,1]
解释:
只有红色节点满足条件“所有不包含 1 的子树”。 右图为返回的答案。

示例 2:

输入:root = [1,0,1,0,0,0,1]
输出:[1,null,1,null,1]

示例 3:

输入:root = [1,1,0,1,1,0,1,0]
输出:[1,1,0,1,1,null,1]

 

提示:

  • 树中节点的数目在范围 [1, 200]
  • Node.val01

解法

方法一:递归

我们首先判断当前节点是否为空,如果为空则直接返回空节点。

否则,我们递归地对左右子树进行剪枝,并将剪枝后的左右子树重新赋值给当前节点的左右子节点。然后判断当前节点的值是否为 0 且左右子节点都为空,如果是则返回空节点,否则返回当前节点。

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$ 为二叉树的节点个数。

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def pruneTree(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        if root is None:
            return root
        root.left = self.pruneTree(root.left)
        root.right = self.pruneTree(root.right)
        if root.val == 0 and root.left == root.right:
            return None
        return root
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public TreeNode pruneTree(TreeNode root) {
        if (root == null) {
            return null;
        }
        root.left = pruneTree(root.left);
        root.right = pruneTree(root.right);
        if (root.val == 0 && root.left == null && root.right == null) {
            return null;
        }
        return root;
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     TreeNode *left;
 *     TreeNode *right;
 *     TreeNode() : val(0), left(nullptr), right(nullptr) {}
 *     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
 *     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
 * };
 */
class Solution {
public:
    TreeNode* pruneTree(TreeNode* root) {
        if (!root) {
            return root;
        }
        root->left = pruneTree(root->left);
        root->right = pruneTree(root->right);
        if (root->val == 0 && root->left == root->right) {
            return nullptr;
        }
        return root;
    }
};
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
/**
 * Definition for a binary tree node.
 * type TreeNode struct {
 *     Val int
 *     Left *TreeNode
 *     Right *TreeNode
 * }
 */
func pruneTree(root *TreeNode) *TreeNode {
    if root == nil {
        return nil
    }
    root.Left = pruneTree(root.Left)
    root.Right = pruneTree(root.Right)
    if root.Val == 0 && root.Left == nil && root.Right == nil {
        return nil
    }
    return root
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
 * Definition for a binary tree node.
 * class TreeNode {
 *     val: number
 *     left: TreeNode | null
 *     right: TreeNode | null
 *     constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
 *         this.val = (val===undefined ? 0 : val)
 *         this.left = (left===undefined ? null : left)
 *         this.right = (right===undefined ? null : right)
 *     }
 * }
 */

function pruneTree(root: TreeNode | null): TreeNode | null {
    if (!root) {
        return root;
    }
    root.left = pruneTree(root.left);
    root.right = pruneTree(root.right);
    if (root.val === 0 && root.left === root.right) {
        return null;
    }
    return root;
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
// Definition for a binary tree node.
// #[derive(Debug, PartialEq, Eq)]
// pub struct TreeNode {
//   pub val: i32,
//   pub left: Option<Rc<RefCell<TreeNode>>>,
//   pub right: Option<Rc<RefCell<TreeNode>>>,
// }
//
// impl TreeNode {
//   #[inline]
//   pub fn new(val: i32) -> Self {
//     TreeNode {
//       val,
//       left: None,
//       right: None
//     }
//   }
// }
use std::cell::RefCell;
use std::rc::Rc;
impl Solution {
    pub fn prune_tree(root: Option<Rc<RefCell<TreeNode>>>) -> Option<Rc<RefCell<TreeNode>>> {
        if root.is_none() {
            return None;
        }

        let root = root.unwrap();
        let left = Self::prune_tree(root.borrow_mut().left.take());
        let right = Self::prune_tree(root.borrow_mut().right.take());
        if root.borrow().val == 0 && left.is_none() && right.is_none() {
            return None;
        }

        root.borrow_mut().left = left;
        root.borrow_mut().right = right;
        Some(root)
    }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
/**
 * Definition for a binary tree node.
 * function TreeNode(val, left, right) {
 *     this.val = (val===undefined ? 0 : val)
 *     this.left = (left===undefined ? null : left)
 *     this.right = (right===undefined ? null : right)
 * }
 */
/**
 * @param {TreeNode} root
 * @return {TreeNode}
 */
var pruneTree = function (root) {
    if (!root) {
        return root;
    }
    root.left = pruneTree(root.left);
    root.right = pruneTree(root.right);
    if (root.val === 0 && root.left === root.right) {
        return null;
    }
    return root;
};

评论