题目描述
给定数组 nums
和一个整数 k
。我们将给定的数组 nums
分成 最多 k
个非空子数组,且数组内部是连续的 。 分数 由每个子数组内的平均值的总和构成。
注意我们必须使用 nums
数组中的每一个数进行分组,并且分数不一定需要是整数。
返回我们所能得到的最大 分数 是多少。答案误差在 10-6
内被视为是正确的。
示例 1:
输入: nums = [9,1,2,3,9], k = 3
输出: 20.00000
解释:
nums 的最优分组是[9], [1, 2, 3], [9]. 得到的分数是 9 + (1 + 2 + 3) / 3 + 9 = 20.
我们也可以把 nums 分成[9, 1], [2], [3, 9].
这样的分组得到的分数为 5 + 2 + 6 = 13, 但不是最大值.
示例 2:
输入: nums = [1,2,3,4,5,6,7], k = 4
输出: 20.50000
提示:
1 <= nums.length <= 100
1 <= nums[i] <= 104
1 <= k <= nums.length
解法
方法一:前缀和 + 记忆化搜索
我们可以先预处理得到前缀和数组 $s$,方便快速得到子数组的和。
接下来,我们设计一个函数 $\textit{dfs}(i, k)$,表示从数组下标 $i$ 开始,最多分成 $k$ 组的最大平均值和。答案为 $\textit{dfs}(0, k)$。
函数 $\textit{dfs}(i, k)$ 的执行逻辑如下:
当 $i = n$ 时,表示已经遍历到数组末尾,此时返回 $0$。
当 $k = 1$ 时,表示只剩下一组,此时返回从下标 $i$ 开始到数组末尾的平均值。
否则,我们在 $[i + 1, n)$ 的区间内枚举下一个分组的开始位置 $j$,计算从 $i$ 到 $j - 1$ 的平均值 $\frac{s[j] - s[i]}{j - i}$,加上 $\textit{dfs}(j, k - 1)$ 的结果,取所有结果的最大值。
时间复杂度 $O(n^2 \times k)$,空间复杂度 $O(n \times k)$。其中 $n$ 表示数组 $\textit{nums}$ 的长度。
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16 | class Solution:
def largestSumOfAverages(self, nums: List[int], k: int) -> float:
@cache
def dfs(i: int, k: int) -> float:
if i == n:
return 0
if k == 1:
return (s[n] - s[i]) / (n - i)
ans = 0
for j in range(i + 1, n):
ans = max(ans, (s[j] - s[i]) / (j - i) + dfs(j, k - 1))
return ans
n = len(nums)
s = list(accumulate(nums, initial=0))
return dfs(0, k)
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32 | class Solution {
private Double[][] f;
private int[] s;
private int n;
public double largestSumOfAverages(int[] nums, int k) {
n = nums.length;
s = new int[n + 1];
f = new Double[n][k + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
return dfs(0, k);
}
private double dfs(int i, int k) {
if (i == n) {
return 0;
}
if (k == 1) {
return (s[n] - s[i]) * 1.0 / (n - i);
}
if (f[i][k] != null) {
return f[i][k];
}
double ans = 0;
for (int j = i + 1; j < n; ++j) {
ans = Math.max(ans, (s[j] - s[i]) * 1.0 /(j - i) + dfs(j, k - 1));
}
return f[i][k] = ans;
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | class Solution {
public:
double largestSumOfAverages(vector<int>& nums, int k) {
int n = nums.size();
int s[n + 1];
double f[n][k + 1];
memset(f, 0, sizeof(f));
s[0] = 0;
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
auto dfs = [&](auto&& dfs, int i, int k) -> double {
if (i == n) {
return 0;
}
if (k == 1) {
return (s[n] - s[i]) * 1.0 / (n - i);
}
if (f[i][k] > 0) {
return f[i][k];
}
double ans = 0;
for (int j = i + 1; j < n; ++j) {
ans = max(ans, (s[j] - s[i]) * 1.0 / (j - i) + dfs(dfs, j, k - 1));
}
return f[i][k] = ans;
};
return dfs(dfs, 0, k);
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | func largestSumOfAverages(nums []int, k int) float64 {
n := len(nums)
s := make([]int, n+1)
for i, x := range nums {
s[i+1] = s[i] + x
}
f := make([][]float64, n)
for i := range f {
f[i] = make([]float64, k+1)
}
var dfs func(int, int) float64
dfs = func(i, k int) float64 {
if i == n {
return 0
}
if f[i][k] > 0 {
return f[i][k]
}
if k == 1 {
return float64(s[n]-s[i]) / float64(n-i)
}
ans := 0.0
for j := i + 1; j < n; j++ {
ans = math.Max(ans, float64(s[j]-s[i])/float64(j-i)+dfs(j, k-1))
}
f[i][k] = ans
return ans
}
return dfs(0, k)
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | function largestSumOfAverages(nums: number[], k: number): number {
const n = nums.length;
const s: number[] = Array(n + 1).fill(0);
for (let i = 0; i < n; i++) {
s[i + 1] = s[i] + nums[i];
}
const f: number[][] = Array.from({ length: n }, () => Array(k + 1).fill(0));
const dfs = (i: number, k: number): number => {
if (i === n) {
return 0;
}
if (f[i][k] > 0) {
return f[i][k];
}
if (k === 1) {
return (s[n] - s[i]) / (n - i);
}
for (let j = i + 1; j < n; j++) {
f[i][k] = Math.max(f[i][k], dfs(j, k - 1) + (s[j] - s[i]) / (j - i));
}
return f[i][k];
};
return dfs(0, k);
}
|
方法二:动态规划
我们可以将方法一的记忆化搜索转化为动态规划。
定义 $f[i][j]$ 表示数组 $\textit{nums}$ 的前 $i$ 个元素最多分成 $j$ 组的最大平均值和。答案为 $f[n][k]$。
对于 $f[i][j]$,我们可以枚举上一组的结束位置 $h$,计算 $f[h][j-1]$,加上 $\frac{s[i]-s[h]}{i-h}$ 的结果,取所有结果的最大值。
时间复杂度 $O(n^2 \times k)$,空间复杂度 $O(n \times k)$。其中 $n$ 表示数组 $\textit{nums}$ 的长度。
| class Solution:
def largestSumOfAverages(self, nums: List[int], k: int) -> float:
n = len(nums)
f = [[0] * (k + 1) for _ in range(n + 1)]
s = list(accumulate(nums, initial=0))
for i in range(1, n + 1):
f[i][1] = s[i] / i
for j in range(2, min(i + 1, k + 1)):
for h in range(i):
f[i][j] = max(f[i][j], f[h][j - 1] + (s[i] - s[h]) / (i - h))
return f[n][k]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19 | class Solution {
public double largestSumOfAverages(int[] nums, int k) {
int n = nums.length;
double[][] f = new double[n + 1][k + 1];
int[] s = new int[n + 1];
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
for (int i = 1; i <= n; ++i) {
f[i][1] = s[i] * 1.0 / i;
for (int j = 2; j <= Math.min(i, k); ++j) {
for (int h = 0; h < i; ++h) {
f[i][j] = Math.max(f[i][j], f[h][j - 1] + (s[i] - s[h]) * 1.0 / (i - h));
}
}
}
return f[n][k];
}
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | class Solution {
public:
double largestSumOfAverages(vector<int>& nums, int k) {
int n = nums.size();
int s[n + 1];
s[0] = 0;
double f[n + 1][k + 1];
memset(f, 0, sizeof(f));
for (int i = 0; i < n; ++i) {
s[i + 1] = s[i] + nums[i];
}
for (int i = 1; i <= n; ++i) {
f[i][1] = s[i] * 1.0 / i;
for (int j = 2; j <= min(i, k); ++j) {
for (int h = 0; h < i; ++h) {
f[i][j] = max(f[i][j], f[h][j - 1] + (s[i] - s[h]) * 1.0 / (i - h));
}
}
}
return f[n][k];
}
};
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | func largestSumOfAverages(nums []int, k int) float64 {
n := len(nums)
s := make([]int, n+1)
for i, x := range nums {
s[i+1] = s[i] + x
}
f := make([][]float64, n+1)
for i := range f {
f[i] = make([]float64, k+1)
}
for i := 1; i <= n; i++ {
f[i][1] = float64(s[i]) / float64(i)
for j := 2; j <= min(i, k); j++ {
for h := 0; h < i; h++ {
f[i][j] = max(f[i][j], f[h][j-1]+float64(s[i]-s[h])/float64(i-h))
}
}
}
return f[n][k]
}
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17 | function largestSumOfAverages(nums: number[], k: number): number {
const n = nums.length;
const s: number[] = Array(n + 1).fill(0);
for (let i = 0; i < n; i++) {
s[i + 1] = s[i] + nums[i];
}
const f: number[][] = Array.from({ length: n + 1 }, () => Array(k + 1).fill(0));
for (let i = 1; i <= n; ++i) {
f[i][1] = s[i] / i;
for (let j = 2; j <= Math.min(i, k); ++j) {
for (let h = 0; h < i; ++h) {
f[i][j] = Math.max(f[i][j], f[h][j - 1] + (s[i] - s[h]) / (i - h));
}
}
}
return f[n][k];
}
|